
DTI_,,:,__OP_Y,

(,O TOWARDS THE KNOWLEDGE LEVEL IN
O4 " :" "

O_ SOAR: THE ROLE OF THE ARCHITECTUR
IN THE USE OF KNOWLEDGE

TechnicalReportAlP - 65
O4

P.S. ROSENBLOOM,A. NEWELL,& J.E. LAIRD

, Universityof SouthernCalifornia,CarnegieMellonUniversity,&

Universityof Michigan

! Atkmtct 7 1G_G
|

The Artificial Intelligence
and Psychology Project

. .DTIC,..!...,,
' ,<.'_ELECTE /

{i".Lq

UDepartmentsof _:_ MAR121990
Computer Science and Psychology ,:::.:;::__
Carnegie MellonUniversity

*_ .^

Learning Research and Development Center
Universityof Pittsburgh

e

" qo 03 /_ o_J
Approved for public release; distribution unlimited.

I _ _ ,_._ _,._ _.,_

1990013581

TOWARDS THE KNOWLEDGE LEVEL IN
SOAR: THE ROLE OF THE ARCHITECTURE

IN THE USE OF KNOWLEDGE

TechnicalReportAlP - 65

P.S. ROSENBLOOM,A. NEWELL,& J.E. LAIRD

Universityof SouthernCalifornia,
CarnegieMellonUniversity,&

Universityof Michigan

August7,1989

7

is;b

Thisresearchwassponsoredbythe DefenseAdvancedReaearchProjectsAgency(DOD)undercontract
numbers N00039-86C-0033 (via subcontractfrom the Knowledge Systems Laboratory, Stanford
University)and F33615-87-C-1499 (ARPA Order No. 4976, monitored by the Air Force Avionics
Laboratory),by the National Aeronauticsand Space Administrationunder cooperativeagreement
numbers NCC 2-538 and NCC 2-517, and the Office of Naval Research under contract numbers
N00014-86-K-0678(InformationSciencesDivision)andN00014-88-K-0554(ComputerScienceDivision)•
The views and conclusionscontainedin this documentare those of the authorsand shouldnot be
interpretedas representingthe officialpolicies,eitherexp-essedor implied,of the Defense Advanced
Research ProjectsAgency,the National Aeronauticsand Space Administration,the Office of Naval
Researchor theUS Govemment.

1990013581-002

Unclassif led _-_

._CUmT_O__ONOF rH_PAGF

t REPORTDOCUMENTATIONPAGE I
lB. REPORTSEL"IJR[TYCI.ASSIFICATION lb. RESTRICTIVEMARKINGS

[[ncias S-ifie d

'2e. SECURII'Y'_I_SIFtOET1ONAU_RII"Y 3. OISTRIIBUIION / AVAIU_.BILITYOF REPORT

Approved for public release;
2b. OECLASSIRCATION/ OOWNGIIJkOtNGSCHEDULE D ist ribut ion unlimited

4. PERFORMINGORGANIZATIONREPORTNUMBER(S) $. MONITORINGORGANIZATIONREPORTNUMBER(S)

AlP - 65 Same as Performing Organization

6a. NAME OF PERFORMINGORGANIZATION lBb OFFICESYMBOL 7e. NAME OF MONITORINGORGANIZATION

Carnegie Mellon University I flf apDlicebte) Personnel and Training Research
Office of Naval Research (Code II42PT)

&¢.AOORES._(Gty, State, and ZlPCocle) 7b. ADDRESS(City,State. and ZIPCoo_)

Department of Psychology 800 N. Quincy Street

Pittsburgh, Pennsylvania 15213 Arlington, VA 22217-5000

841.NAME OF FUNDING/SPONSORING _Sb. OFFICESYMBOL 9.PROCUREMENTINSTRUMENTIOENTIFICATIONNUMBER

ORGANIZATION I (If a_oiicable) NO0014-88-K-0086_me as Monitoring Organization

8C AOORESS(City, St,., and ZlPCode) 10. SOURCEOF FUNDINGNUMBERS

PROGRAM ! PROJECT IT_K IWORKUNIT

ELEMENTNO NO. |ACCESSIONNO

N/A N/A i N/A I ,,N/A

11. TITLE(IncludC Security Cla_fication) Towards the knowledge level in Soar: The role of the

I architecture in the use of knowledge

|

.12 PERSONALAUTHOR(S) Paul S. Rosenbloom, Allen Newell, and John E. Laird

I lecnnlcal FROM86Sep ti5rO 1 august 7, 1989 71

16 SUPPtEMENTARY NOTATION To appear in VanLehn, K. (Ed.), Architctures for intellisence.
llsdale, NJ: Erlbaum. L

18 SUBJECTTERMS(Cont,nu# on revar_e ,f nece_ary and i'i_'ntffy--by block number)

I FIELD GROUP SUB-GROUP procedural knowledge
episodic knowledge
declarative knowled e

19, ABSTRACT(Continue on reverse if necessaryand ioientffy by block number)

SEE REVERSE SIDE

i|

20 DISTRIBUTION/AVAILABILITYOF ABSTRACT |21 ABSTRACTSECURITYCLASSIFICATION

I-1 UNCLASSIFIED/UNLIMITEDX_ SAMEAS RPT [] oT,c uSERSI. i i

22e NAME OF RESPONSIBLEINDIVIDUAL J22b TE EPHONE(Intluo_ Aria Co(_e)i 22¢. OFFICESYMBOL

Susan Chipman I (202_ 696-4322 I n42 PT

.DOFORM1473,M MAR 83APRed,t,Onmay I_ usedunbl exhausted. Si_(;_RITYCLA_;_IFI_TIONOF THI_ PAGE .
Allother editionsare obllolete.

Unc].assifled

1990013581-003

1
p,

ABSTRACT

Soar has been describedas an architecturefor a systemthat is to be capable of general
intelligence.One way to specifywhatthis mightmeanis to definegeneralintelligenceas the
abilityto approximatean idealknowledgelevelsystemacrossa sufficientlybroadset of goals
andknowledge.In thischapterwe usethisdefinitionas thebasisfor evaluatingthescopeof this
chapter,so _.;efocusmore narrowlyon howthe Soar architecturesupportsand constrainsthe
representation,storage,retrieval,use and acqu!sitionof threepervasiveformsof knowledge:
procedural,episodic,and declarativeknowledge. The analysisrevealsthat Soar adequately
supportsprocedualknowledge- to someextentit was designedfor this - butthat thereare still
significantquestionsaboutepisodicanddeclarativeknowledge.Thesequestionsariseprimarily
becauseof consequencesof the principlesoe;ceon constraintin Soar, the fact thatall learning
occursvia chunking.Newresultsare alsopresentedon theacquisitionof declarativeknowledge.

1990013581-004

Towards the Knowledge Level in Soar:
The Role of the Architecture in the Use of Knowledge

Paul S. Rosenbloom

Information Sciences Institute

University of Southern California

.&lien Newell

Department of Computer Science

('arnegie-N[e[lon University

.John E Laird

Department of Electrical Engineering and Computer Science

University of Michigan

\
'\ August 7, 1989

\
\

\ Abstract

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One way to specify what this might mean is to define general intelligenceas
the ability to approximate an ideal knowledgelevel system across a sufficiently broad set
of goals and knowledge. In this chapter we use this definition as the basis for evaluating
the degree to which Soar achieves general intelligence. A complete evaluation is beyond
the scope of this chapter, so we focus more narrowly on how the Soar architecture
supports and constrains the representation, storage, retrieval, use and acquisition of three
pervasive forms of knowledge: procedural, episodic, and declarative knowledge. The
analysis reveals that Soar adequately supports procedural knowledge - to some extent it
was designed for this - but that there are still significant questions about episodic and
declarative knowledge. These questions arise primarily because of consequences of the
principlesourceof constraint in Soar, the fact that all learning occurs via chunking, New

resultsare also presented on the acquisition of declarative knowledge. (k'_

L

_ .:._

1990013581-005

' , _ " " in ,',oar Pa_e u

Table of Contents

1. Soar 5

2. Architectural Support for Knowledge 1:2

3. Procedural Knowledge 17

3.1. Performable Actions 17
3.2. Action Control .).)

-m

a.a. Action Performance 24

3.4. Summary :27

4. Episodic Knowledge :28
4.1. Representation 29

4.2. Storage 33
4.3. Retrieval 34

4.4. Use 34

t.5. Acquisition 38

4.6. Summary 45

5. Declarative Knowledge 47

5.1. Representation 48

5.2. Storage 50

5.3. Retrieval 50

5.4. Use 52
5.5. Acquisition 53
5.6. Summary 61

6. Conclusions 63

1990013581-006

Towards the KnowledgeLevel in Soar Page 1

]

To_ the Knowledge Level in Soar: The Role of the Architect
the Use of Knowledge l

Soar has been described as an architecture for a system that is to be

capable of general intelligence (Laird. Newell, & Rosenbloom, 1987). One

way to specify what this might mean is to enumerate the set .')f

capabilities that. based on the field's cumulative experience, appear to be

required for general intelligence: to be able to work on the full range of

tasks, to be able to use the full range of problem-solving methods and

varieties of knowledge, to be able to interact with the outside world in real

time, and to learn about the world and the system's own performance.

Progress can then be evaluated by determining the degree to which the

architecture supports such capabilities. For Soar, such an evaluation

reveals significant progress in the areas of tasks (Laird, Newell, &

Rosenbloom, 1987), problem-solving methods (Laird & Newell. 1983,

Laird, 1983) and learning (Steier et al, 1987); some progress in the area of

outside interaction (Laird, Yager, Tuck. & Hucka. 1989): and an unclear

situation in the area of knowledge.

IThim research was sponsored by the Defense Advanced Research Projects Agency
(DOD) under contract,numbers N00039-86C-0033 (via subcontract from the Knowledge
Syst¢l_ Laboratory, Stanford University} and F33615-87-C.1499 (ARPA Order No. 4976.
monitoredby theAirForceAvionicsLaboratory),bytheNationalAeronauticsandSpace
AdministrationundercooperativeagreementnumbersNCC 2-538and NCC 2-517,and
theOfficeofNavalResearchundercontractnumbersN00014-86-K-0678{Information
SciencesDivision)andN00014-88-K-0554(ComputerScienceDivision).The viewsand
conclusionscontainedin thisdocumentarethoseoftheauthorsand shouldnot be
interpretedasrepresentingtheofficialpolicies,eitherexpressedorimplied,oftheDefense
AdvancedResearchProjectsAgency,thcNationalAeronauticsandSpaceAdministration,
theOfficeofNavalResearchortheUS Government.

T 7[

'19900] 3581-007

TowardstheKnowledgeLevelIn_.oar Page2

T]II_ problem witk such an approach to specifying land _valuating

progress towards) general intelligence is the lack of theoretical

justifications for the ,;et of ,'apabilities included. Without such

justifications it is unclear, for example, whether some new form of

learning that is developed is necessary for general intelligence, or just _,n

interesting oddity. [n addition, whole catego_'ies of critical capabilities

may be unknowingly omitted. What is needed is a more fundamental

definition of general intelligence from which the required capabilities can

be derived (or at least justified).

One idea that shows promise towards providing such a definition is the

knowledge level (Newell. 1981). The idea of the knowledge level is based

on earlier developments in the area of computer systems levels (Bell &

Newell, 1971). A computer systems level consists of a medium that is

processed, components that provide primitive processing, laws of

composition that permit components to be assembled into systems, and

laws of behavior that determine how system behavior ,Jepends on the

component behavior and the structure of the system. Existing levels (and

their media) include the device level (electrons), the circuit level (current),

the logic level (bits), the register-transfer level (bit-vectors), and the

program {or symbol) level (symbols. expressions). In terms of these levels,

an architecture is a register-transfer level system that defines a symbol

level.

The knowledge level is a distinct computer systems level that lies

I

1990013581-008

"l_'_rds the Knowledge Level in ",oar Pa_. :¢

im_ately above the symbol level. The medium processed :it the

knowledge level is knowledge. An agent - a system at the kno_,!ed_e

level - _'onsists of a physical body that can interact with an envir,_nment.

knowledge, and a set of goals. The law of behavior is the Pr/r:clple ,f

Rationality: "If an agent has knowledge that one of its actions will [end to

one of its goals, then the agent will select that action." (Newell, 1981. p.

8) Once knowledge is acquired, it is available for all future goals. There

are no capacity limitations _)n the amount of knowledge that can be

available or on the agent's ability to bring it to bear in the selection of

actions that achieve its goals. An essential feature of the knowledge level

is that the agent's behavior is determined by the content of its knowledge,

not by any aspects of its internal structure. It abstracts away from the

processing and representation of the lower levels. This lack of significant

internal structure implies that there are no laws of composition at the

knowledge level.

The knowledge level provides a straightforward, though not

uncontroversial, definition for intelligence. A system is intelligent to the

degree that it approximates a knowledge-level system (Newell. 1989).

Perfect intelllgence requires a complete lack of internal resource

limitations. However. this ideal is unreachable in phys!cally realizable

systems that are required to make deeMons using bounded resources over

a sufficiently wide range of goals using large bodies of knowledge. Such

systems can at best only approximate a knowledge-level system, and thus

1990013581-009

Toward._the Kaowledge Level in Soar Page 4

achieve some level of intelligence that is less than perfect. The ideal ,ff

perfect intelligence also does not entail she _enerality o_' that intelligence.

A system's behavior is characterized both by its inteiligence and by it_

generality. Generality for a knowledge-level system is the range of

interactions that it can have with the environment, the range of goal', it

can have, and the range of knowledge that it can acquire and use.

Intelligence is how well the system applies its knowledge to the tasks

within its scope.

Assuming this knowledge-level definition of general intelligen_.e, the key

question for the architecture is how it supports the knowledge level for a

sufficiently broad set of goals and knowledge. How does it approximate

rationality with bounded resources? How does it _upport the acquisition

and use of knowledge? A complete answer to the key question requires

answering a number of such subque_tions. In (Newell. 1989), a beginning

was made at answering the first subquestion. In this chapter we provide

the beginnings of an answer to the second subque_tion. \Ve examine how

the Soar architecture supports and constrai.,_s the representation, storage,

retrieval, use and acquisition of three pervasive forms of knowledge.

The fiat form of knowledge to be examined is procedural knowledge.

Procedural knowledge is knowledge about the agent's actions. It includes

knowledge about which actions can be performed, which actions should be

performed when (control knowledge), and how actions are performed. The

second form of knowledge to be examined is episodic knowledge. Episodic

1990013581-010

Towards the Knowledge Level ,n >oar Pa_;_5

knowledge is knowledge about what objects, actions, and action ,_equence_

have occurred in the agent's past. It allow_ answorinz such questions :k._

"Did this object, action, or action -_quence .,eeur tin this ,'ontex_ I?" and

"What objects, actions, or action -oquenoes occurred iin this context f?"

The third and final form of knowledge to be examined is ,teelarative

knowledge. Declarative knowledge is knowledge about what is true !n the

world. These final two forms of knowledge have often been referred to

collectively as propositional knowledge, with the term "semantic

knowledge" used in place of ,teclarative knowledge (Tui','ing. 1983).

The plan for _his ohapter is to start _,ith a brief conventional description

of the Soar architecture (Section 1). followed by its redescription in terms

of the direct support it provides for knowledge I',_ction 2';. The core of

the chapter then consists of in-depth analyses of h,_w procedural, episodic.

and declarative knowledge are represented. _tore,l. retrieved, used. and

acquired in _oar (%etions 3-5). ",pecial omphasi_ i'_placed ,m hnw the

architecture ._upports and constrains these abili,i_..< The ,'hap,er is

concluded with a summary of key points and iI_.I._rtant ,ti,'eetions for

future work (Section 6).

1. Soma''"

Research on Soar to date has focused on ,he development (and

application) of an architecture for intelligence that is based on formulating

2This sect|on describes Soar 4.5 (Laird ,t al. 1989}. which is the ba._tsfor zhe analyses
in thischapter

1990013581-011

Towards the' Knowledge L,,_,_Im "oar Pa,_q"6

all symbolic _oal-oriented I-,eha_icr as ,search in problem ,,pace,,. The

problem space determines the ,_ei of _tates and operators that can be ;zsed

,luring the processing t,> attain _1goal. The states represent .-itt,ations.

There is an initial ..tare. representing: the initial situation, an,l a -,et of

desired states that represent the goal. An operator, when applied to a

state in the problem space, yields another _tate in the problem _puce. The

goal is achieved when a desired state is reached as the result of a sequence

of operator applications ,starting from the initial state. Each _oal define.,.

a problem-solving context ("r'rmtext" for short) that contains, in addition

to a goal. roles for a problem space, a -state. and an operator.

Problem solv!ng for a goal is drh'en by decisions that result in the

selection of problem spaces, states, and operators for the appropriate roles

in the context. Decisions are made by the retrieval and integration of

preferences - special architecturally interpretable elements that ,iescribe

the acceptability, desirability, and necessity of selecting particular problem

spaces, states, and operators. The context in which :t preference is

a, 21icable is specified by its goal. problem-space. _tate. and operator

a'tributes. When present, they specify the objects that must be already

selected in the context for the preference to be valid. For example, the

following is a desirability pr_-ference stating that operator ol is at least as

good as any other operator - that is. it is best - for state ,1. problem

space pl. and goal gl.

{preference ol role operator "value)est

"goal gl "problem-space 01 "state sl}

1990013581-012

I

TowardstheKnowledgeLevelin _oar Pag_7

There are two types of accept.ability preferences - acceptable and r_ject

- to rule a_; operator into and out of consideration for selection..k rejec'

preference overrides an acceptable preference. There are five t.vpe_ of

desirability preferences - worst, worse, ind;fferent, better, and best - to

determine the relative desirability of considered objects. Worst and best

are unary preferences. Worse and better are binary preferences.

Indifferent can be binary or u,lary, in which ease the object is indifferent

to all other competing objects with indifferent preferences. There are two

types of necessity preferences - require and prohibit - for asserting that

an object must or must not be selected for a goal to be achieved. Details

" on the semantics of preferences can be fop.,ld in (Laird, Newell. &

Rosenbloom. 1987).

All long-term knowledge is stored in a recognition-based memory - a

production system. Each production is a cued-retrieval unit that retrieves

the contents of its actions whey. the pattern in its eCmditions is successfully

matched. By sharing variables between e¢_nditions and _ctions,

productions can retrieve information that is a t'unetion of what was

matched. By having variables in actions that are not in conditions, new

objects can be generated/retrieved.

Transient process state is contained in a working memory. This includes

information retrieved from long-term memory, results of decisions made

by the architecture, information curren,ly perceived from the external

environment, and motor commands. It should be clear that this process

..... 1990013581-013

TowsrdstheKnowiedlleLevelin_oar P;_¢_i

st_'m much more than just a single .4.tarein a problem space. The

process state is the entire transient state of the system, which includes as

components, states in problem spaces, and in fact whole problem-_lving

contexts. It provides the cues for retrieving additional information from

long-term memory.

Structurally. working memory consists of a set of objects and preferences

about objects. Each object in working memory has a class name. a unique

identifier, and a set of attributes with associated values, which may be

constants or identifiers (allowing a graph structure of objects). For

example, a particular box could be represented by the following object.

(box bl "name boxl "height IO "width 4 "depth 2)

The class is "box", the identifier is "bl". the name of the box is "boxl m.

and the box has a height of 10 a width of 4 and a depth of 2.

For each problem-solving decision, the contents of working memory is

elaborated by parallel access of long*term memory to exhaustion. All

productions that match the current working memory are fired in parallel,

and this repeats until no productions match. This elaboration proces_

retrieves into working memory new objects, new information about

existingobjects,and new preferences.When quiescenceisreached- that

is,when no more productionscan fire- an art'" 'uraldecision

procedureinterpretsthepreferencesinworkingmer ng totheir

fixedsemantics.Ifthe preferencesuniquelyspecify _jectto be

selectedfora roleina context,suchasselectingthecurrentoperatorfora

1990013581-014

Towards the Knowledte L_wl in Soar Page 9

state, then a decision can be made. and the specified object become-: the

current value _f the role. The whole process, an elaboration phase

followed by a decision, then repeats.

If the decision procedure is ever unable to make a selection - because

the preferences in working memory are either incomplete or inconsistent -

an impasse occurs in problem solving because the system does not know

how to proceed. When an impasse occurs, a subgoal with an associated

problem-solving context is automatically generated for the task of

resolving the impasse. The impasses, and thus their subgoals, vary from

. problems of _lection (of problem spaces, states, and operators) to

problems of generation (e.g., operator application}. Given a subgoai, Soar

can bring its full problem-solving capability and knowledge to bear on

resolving the impasse that caused the subgoal. For example, if an

operator-tie impasse occurs because multiple operators are competing for

selection with insufficiently distinguishing preferences, then a sub_oal is

created in which Soar can (among other things) execute operators to

evaluate the competing alternatives. Productions can then create

preferences based on these evaluations, allowing the decision to be made.

When impasses occur within impasses - if, for example, there is

insufficient knowledge about how to evaluate a competing alternative -

then subgoals occur within subgoals, and a goal hierarchy results (which

therefore defines a hierarchy of contexts), The top problem space consists

of task operators: such as, to recognize an item. The subgoals are

1990013581-015

'Towsrds the Knowledge Level in _,_ar Page i0

gener_d, as the result of impasses in problem _olvin_. .\ _ubgoal

terminates when the impasse is resolved.

Soar learns by acquiring new productions that summarize the processing

that leads to the results of subgoais, a process called chunking. The

actions of the new productions are based on the results of the subgoai.

The conditions are based on those working memory elements in supergoals

that were relevant to the determination of the results. Relevance is

determined by using the traces of the productions that fired during the

subgoal. Starting from the production trace that generated the subgoai's

result, those production traces that generated the working-memory

elements in the conditions of the trace are found, and then the traces that

generated their condition elements are found, and _o on until elements are

reached that are in supergoals. Productions that only generate desirability

preferences do not participate in this backtracing proce_ - desirability

preferences only affect the efficiency with which a goal is achieved, and

not the correctness of the goal's results.

Soar'sperceptual-motorbehaviorisdrivenby a setof asynchronous

modules,and mediatedthroughthe statein the top context. Each

perceptualand motor modality(module)has itsown stateattributeto

whichperceptualinformationisadded and/ormotorcommands aretaken.

New sensoryinformationarrivesin working memory wheneverit is

available,and motor commands are sent to the appropriatemotor

modules as soon as they are added to working memory. Sensory

1990013581-016

Towards the Knowledge Levei in ",nar Page If

..

information can be retained by _xplicitly attaching it to other ,_xistin_

structures. Otherwise. it will be ,lisplaced when new information arriv_.

Figure 1-1 summarizes the major ftmctional and structural ¢'omponeuts

ot' the Soar architecture - its memories, basic computational cycle.

learning, and interfaces.

• Purpose of Research: Architecture for general intelligence.

• Organizing Framework: Goals and problem spaces

• Long-term Memory: Recognition-based productions.

• Short-term .Memory: Object,_ and attributes.

• Basic Computation Cycle: Elaboration (access LTM until
quiescence) and decision.

i

• Decisions: Preference-based for problem spaces, states, and
operators.

• Subgoai Creation: Impasses in decision scheme.

• Learning: Chunking - -,ummarize processin_ of _ubgoal as :_
production.

• Interface to External Environment: .-ksynchronous through top-
state.

Figure 1-1: Summary of Soar.

1990013581-017

i

Tow_d_ the Knowledge Level in ='_ozr Pa,Ee12

_Az'_itectural Support for Knowledge

The conventional description of Soar provided in the previous section

does not always make clear the ways in which the architecture direetl.v

supports knowledge. That is the task for this section - to make explicit

the ways the architecture directly supports knowledge in general, and

procedural, episodic, and declarative knowledge in particular. The

question of indirect architectural support is left to the later sections, which

examine each of these three types of knowledge in detail.

General support is provided by productions• the elaboration phase.

impasses, subgoals, problem space search, working memory, and chunking.

Productions provide for the explicit storage of knowledge• The knowledge

is stored in the actions of productions, while the conditions act as access

paths to the knowledge. The process of retrieving knowledge by the

matching and firing of a production comprises a search of the system's

explicitly stored long-term knowledge. It is thus termed knowledge search

(or k-search). Knowledge retrievable by k-search - i.e., by the firing of a

production - is termed k-retrievable knowledge. K-search is efficient, but

relatively limited in its capabilities,.

Knowledgethatisnot retrievableby thefiringof a singleproduction

may stillbe retrievableby the firingofmultipleproductionsina single

elaborationphase. Thishappenswhen informationretrievedearlyinan

elaborationphaseprovidesthecuesthatlllowthedesiredinformationto

beretrievedby a laterproductionfirin_z.Italsohappenswhen thedesired

:'"_I_'!" I I I I I I I I I I I I

1990013581-018

'Towards the Knowl.d¢_ Level in _oar Pa=;e!:5

information is distributed among the actions of multiple productions.

which retrieve it by firing jointly within the same elaboration phase. This

is termed k"-.seareh, and knowledge retrievable through elaboration i,,

termed k*-retriecable knowledge, k*-seareh is exhaustive but efficient.

allowing the system to use a significant body of knowledge in its decisions

even under relatively stringent time constraints.

The creation of impasses provides a means for determining when the k*-

retrievable knowledge is an inadequate basis for making a decision. The

decision procedure can detect incompleteness and inconsistency in the set

of k*-retrievable preferences, but cannot directly detect incorrect or sub-

optimal knowledge.

Subgoals provide contexts in which knowledge that is not k*-retrievable

can be retrieved by problem-space search (or ps-.search). Knowledge that

is retrievable by ps-search is termed ps-retriet'ab/e knowledge. Because

problem-space search (ps-search) is always _v_,ntually grounded in

production firings (k*-search), there is a fairly dire_'t relationship between

ps-retrievable knowledge and k*-retrievable knowledge. 3 Knowledge that

is ps-ret:ievable in the current context is constructed from pieces of

knowledge which are independently k*-retrievable in other contexts, but

not jointly k*-retrievable in the current context. Ps-search allows for the

3Here, and in the remainder ot this chapter :.he terms k*-search and k*-retrievable
knowledge will be assumed to subsume the terms k-search and k-retrievable knowledge.
respectively, except where the distinction is pa, t,icularly crucial.

1990013581-019

TowardstheKnowledgeLevelin',oar Pale[4

co_iderat:._n of alternative_, and the deliberate construction ,ff

information, whereas k*-_earch provides for only the monotonic

accumulation of knowledge. Problem-space search is selective and slow.

but can with sufficient resources retrieve any knowledge in the system's

knowledge level.

Working memory provides a locus where retrieved knowledge can be

examined and used. It also provides a locus where new knowledge can

reside temporarily before it i_ stored into long-term memory by chunking.

Chunking provides a means of creating new productions, thus directly

augmenting the system's store of k*-retrievable knowledge, and indirectly

augmenting its store of ps-retrievabie knowledge. Chunking is the

mechanism for converting ps-search to k*-seareh.

Procedural knowledge is specifically supported by the architecture in

four ways. First, production execution is a primitive form of controlled

action. Executing a production performs a form of retrieval in which the

retrieved information is adapted to the current situation before being

retrieved. The nature of the adaptation is determined by the production's

variables. Variables that are shared between conditions and actions result

in the retrieved information being instantiated to be about existing

objects. Variables that exist only in actions result in the creation of new

objects. Control is exerted on production execution by the match.

Production conditions specify situatior_ tha_ must hold in working

memory in order for the retrieval actions to be executed (Newell,

... 1990013581-020

Towards the Knowledge Level m ",oar P*e_ 1",

Rosenbloom & Laird. 1989). Unlike traditional production s_'stems, rherp

is no additional conflict resolution process that participates in the ,,_mtrot

of production execution.

%cond. the selection of an object for a context slot is also a primitive

form of controlled action, Selections are actions performed by the

architecture that change the focus of problem solving in working memory.

For example, the selection of a new operator changes what the system is

attempting to accomplish. Preferences represent architecturally

interpretable control information for the selection process.

Third, the concept of a problem-solving operator is partially supported

• by the architecture. The architecture provides an operator role in

contexts and the decision procedure that enables the selection of operators

for operator roles, It also provides for the generation of impasses when

there is insufficient knowledge about how to select or execute an operator.

An important form of support not provided is an architecturally

interpretable operator language. Instead. operator execution always

eventually grounds out in memory retrieval (and motor behavior). How

this happens may be quite complicated, involving numerous subgoals, or

the interpretation by productions - that is. by further memory retrieval

- of an arbitrary operator language.

Fourth. the architecture provides motor commands that perform

primitive actions in the external environment. There is not yet a complete

! a

1990013581-021-

To_'ards the Knowledge Lev.I in 5oar Pace 1_

and standard set of motor commands in _oar. Instead. what _,xists i-: a

text-output module, providing basic text-output c(>mmands, and :, flexible

mechanism for adding new modules to. fl)r _,xample. (.ontrol robot arms

(Laird. Yager. Tuck. &" Hucka. 1989) and mobile robots. _election ot'

motor commands is not provided directly by the architecture. [t is under

the control of the knowledge (productions} which retrieve the motor

commands into working memory, usually 1ruder the aegis of operator

execution.

Episodic knowledge is specifically supported by the chunking and

execution of new productions. Chunking acquires new productions based

on problem-solving episodes. The actions of a chunk correspond to

information that was generated as the result of :m episode. When the

chunk executes it retrieves information that is _imilar to that generated

during the episode - though, as mentioned above, the retrieved

information is generally adapted to the current _it**ation rather than being

a verbatim record of the earlier episode's results. The conditions of the

chunk ensure that the adapted results are only retrieved in similar

_ltuatlons. Not provided by the architecture is a mechanism that creates

verbatim records of the system's experiences for later examination.

Declarative knowledge is specifically supported by the working and

production memories. Working memory is a transient memory of objects.

with associated attributes and values. These objects are declarative in

that they are examinable (by productions), but they need not have a fixed

..................... * i i ii * I I II I

1990013581-022

J
i

• Towards the Knowledge Lrvel in ",oar Pa¢,. 17

I

semantics. Production memory provi te._ for lone-term -r<_rn__+_.,f

declarative structures - in the actions (_f p,'(_,l,,otion,; - whi(.h ,'an he

retrieved (and .tdapte,t) by producthm ,_xe,'uti(m.

3. Procedural Knowledge

.-ks mentioned in the introduction, procedural knowledge i,: knowledge

about the agent's actions, which includes knowledge about which actions

can be performed, which actions should he performed when {control

knowiedge), and t_ow actions are pert'ormed. Proce_tural knowledge is

already one of the most well _levelope, I and understood parts of Soar.

Soar was. after all. originally ,leveloped ,_ a general problem-solving

architecture. Thus this section primarily serves as a review, but it also

" serves to develop a number of the basic concept- used in the subsequent

sections on episcdie and declarative knowledge. The discussion is divided

into subsections covering the three subdom:fins mentioned above:

performable actions, action control, and action performance. For each of

these subdomains, we discuss how the knowled_,, is represented. :toted.

retrieved, used. and acquired. This same s,tborga,',ization will be followed

in later sections on episodic and declarative knowl,,tge.

8.1. Performable Actions

Performable actions are represented as operators, along with acceptable

preferences that can cause the operators to be considered in some set of

situations. Each operator is represented in working memory as an object

- a declarative structure - rather than a production. For example, an

ii

1990013581-023

Towards the Knowl_.dze Levd in ",o.w Parle 18

/

o_ in the Eight Puzzle that slides a tile from one cell on the board

to an adjacent one could be represpnted as (operator oi "name elide).

When augmented with paramet_'rs specifying the _urce and destination

cells for the tile. the operator can be represented as (operator oi "name

slide"source¢1 "destinatione2).where the symbolsel and c2 are the

identifiersofthetwo cells.

The declarative structure for operators, and their acceptable preferences.

are stored in the actions of productions. The entire object can be stored

in the actions of a single production (k-retrievable): it can be distributed

across the actions of a group of productions that all fire within a single

decision cycle (k*-retrievable): or it can be distributed across multiple

productions that fire in a subgoa[that constructs the operator, bit by bit

(ps-retrievable).

Problemspacesarea majorsourceofcontextforoperatorretrieval.The

productioninwhich theaboveEightPuzzleoperatorisstoredwillhavea

conditionwhich teststhatthe EightPuzzleproblemspaceisthe one

currentlyselectedin a contextbeforeretrievingthe operatorfor the

context.Itisalsooftenusefultoutilizetheoperator'spreconditionsas a

sourceof retrievalcontext.[fthisisdone,then the operatorisonly

retrievedinsituationsforwhich itisapplicable.An alternativeisto

retrievetheoperatoraccordingtomeans-endsanalysis,thatis.when the

operatorwillreducethe differencebetv'eenthe currentstateand the

desiredstate.With means-endsanalysis,an operatormay be retrieved

........... 1990013581-024

I',,_ird_theKno_'l,,d_el.,.v,.lin'_o:Ir P.'IfeI_)

even when its prec_nditions ero n,_r -ati'qi_,t by the ,,_rront state.

()p_r:_t(_r._I,v themseiw-,.,i._:_.,_i_iIic.The :xrchiteeture,l()esm)I

_mderstandthe language(,,)]n_hi¢'h..per;_t(>rs"Irewritten,and Theref(_r_

,{oe¢.not know how. based]_,_.,ntt_e(_per_torsthemselves._,__ither

_elect among them or to perform them. The best the architecture can do

without additional knowled/,e l_ to perform various default actions hased

(_n its unde_tanding of their "l('c_ptable preferences. It can select an

(_perator if it i_ the (_nly ('an,ti,tate available, and generate an impasse if

there is more than one opPrat(>r. ,_r iF the selected one cannot, be executed.

Operators. and their acceptable preferences, are cues for retrieving a

variety of additional knowled_,e. The operat()r structure can trigger

knowledge about how to select and perform operators (Sections 3.2 and

3.3). The acceptabte preferences can rri_er knowledge in both

prospective and retrospective t':_shions. Prospectively. acceptable

preferences for operators determine what (_perat_r- .Lre being ('onsidered

for the next selection. Retrospectively. acc(,I.table preferences for

,;perators act as episodic knowledge about what (_p,,rators were considered

for what states (Section 4}.

Operators. and their acceptable preferences, are acquired by the

chunking of problem-solving episodes that generate them as results.

Chunking does not by itse!f generate ne_ operators, but it car :c_.vert ps-

retrievable operators into k'-retrievabie ones. as well as store away in

................ 1990013581-025

'"TowardsvheKnowledl/eLevelin_oar P-_l/e20

produ_ion memo .ry new operators, that are generated. The conversion of

operator knowledge from ps-retrievable to k*-retrievable is the obvious

caching effect produced by chunking. _torage of newly ._enerated

operators factors into two cases. If the new operators are generated

internally, then they must have already been ps-retrievable - that is.

retrievable I:y problem space :search - thus reducing this case to the

previous caching situation. If the new operators are based on external

information, chunking can _urn unretrievable operators into k*. retrievable

operators. This is a more subtle ,'onsequenee of chunking that is worth

looking at in _me detail.

Yost & Newell (1988) demonstrated how new operators could be

acquired from external information, in the context of a system called TAQ

(Yoet. 1987) that acquires new tasks (i.e., problem spaces) from external

descriptions. In more recent work. this approach has been extended to

take simple English instructions for a range of immediate-reasoning tasks.

such as categorical syllogisms and sentence verification (Lewis. Newell, &

Polk, Ig8q). Figure 3-I shows the two basic steps. The first step in task

acquisition is to comprehend an externally provided description of the task

to be _quired. This description can conceptually take a variety of forms

- versions of TAQ have accepted descriptions in simple English sentences

mind in a formal problem space notation. The outcome of the

comprehension process is the presence in working memory of a declarative

description of a problem space for the task. The second step is to so3ve

ii|l I

1990013581-026

TowardstheKnowi_d¢_L-_-I=n",oar I' i¢- 21

the problem using the ,teclarative ,te:cription interpr"ri'._l.v. l'h:_t i,..,t

,=ach point in task p_=rt'ormance, if the next required :xvtivity - -Ii,'h :=: Ch-

generation c_t"an operator - is not ,tireotly performabl-iv k'--_.:_r,'h. _h,.n

a subgoal occurs. Within the -;ubgoal. the declarative r:mk ,lv',eripticm i-

examined and interpre_,=d by a set of pre-existing problem ._paL'e_1hat

search through the declarativ_= task description for information nbonr what

to do in the current :situation.

Comprehension Interpretation

Unretrievable Ps-retrievable K*:retrievable

External Internal Internal action

declarative declarative specification of
specification of specification of task
task task

Figure 3-1: The two stages of acquiring op,_rator knowledge.

The chunks acquired for these interpretation sub,.':,als ,tir_etly impi_..nent

the required activity. Chunking the compreh,._ion prooe_s ,,onverts

unretrievable operators into ps-retrievable operator- - ILsin_memorization

techniques described in Sections 4 and .5 - and chunking of the

interpretation process makes the ps-retrievable knowledge k*-retrievable.

1990013581-027

Towards the Knowledl_eL_.v_lm ",o,_r i'.+¢e2:2

8,11. ,A!M_l;ionControl

Control knowledge - that i-:. knowledc;e about how to .,elect :,atone:

performable actions - is r_pre_ented to :he architeetl,re I,v ,,p_r:m_r

preferences. The three types <)f preferences described in ",_.ctioa I -

acceptability, desirability, and necessity - are used to repre,,ent t h_'ee

qualitatively different types of control knowledge. Acceptability

preferences represent knowledcje about whether an operator i_ to be

considered for execution. {'nconsidered operators have no effect on the

decision procedure: they cannot be-'elected, nor can they cause an impa.sse

to occur. Desirability preferences represent heuristic information that can

be brought to bear in determining what operator is likely to lead towards

goal satisfaction. Necessity preferences represent constraints derived from

the goal. They can be used to guarantee that certain conditions are

always (or never true) during the search, thus _liminating the need to

explicitly test them at the end. [n the extreme, necessity preferonces can

be used to explicitly represent the entire sequence ¢_f+teps in a procedure

that achieves some goal. eliminating the need for :,n explicit goal test at

the end.

Prefereac_J are stored in the actions of productions. [n any particular

situation an arbitrary preference can be k-retrievable, k*-retrievable, ps-

retrievable, or unretrievable. The primary context for preference retrieval

is the object being considered and the objects already selected as part of

the problem solving context. For example, the retrieval context for

i i

1990013581-028

• T.'t_ 1."i._ thf' ixnowi,-,,|_' I.,-_ ..+,n ", ;:,r t' lz_ ".'.;

operator preferen,'P_ in the Ei,zht t"tzzl,-, in,.l_t,b.- the. [,.t-:,t_t it_.¢

,'.-,n_i,tered +to qi,F. :1 t_le l'mm ,+.tl ,'1 i,t,, ,',.11 ,'_'_. 'iw _,):ti t,)t,,. :,,'!th._.+,i

:, -,4uti_m t(, the Ei,zht t',lzzi-:. ,},_' l,r _i',i,_.m-i;:,,',-. ,Ei_ht-P,l,:zt,+,. :t,,i rh.-.

-_tate to which the ,,l.;.r:_t,>r l- ,,, 1,- :,l,{,ll",t. {-'(,r binary I;r,'f++r_rt<'*''_. -m'h

as better worse and indiff,,r++t,t prefe:'+.+ll('es, the retrieval ,'ontext im'i,l,ies

muitiple contending <)l)jects.

Pr0t'erences are ,r_ed both t,v th++ :tr,-hitm't,lre -- the ,lecish)n procedure

- -rod hv <_ther km)xvle,t_e. "Fh+' :_rehitectnre u_es preferenc+_ to

,letermine what -,+lecti(m t,_ make. ,,r what type of sul)goal to generate if

no ._election ('an he ma,l,. .X.+, lllelltit)ne, l ill Section 3.1. preferences can

act as cllesabout what the ,iecisionprocedureim going to do, and to

reconstruct +,,hat it did in the p:_,_t.

Preferences are acquired I',v the ,'h,inking ()f i rohlem-_olvin_; episodes

that generate preferences a., their ro._,llts. .X.lost <)f _),tr ,experience in

acquirin+_, preferences itr,olve,_ the "w,t,li-" ion (-_t' !,+.sir:li,illty I,reD'rences

and ,hat i- all that wilt t,e ,[is<',rs.',e,{ here. th<,,l_h the :w,t,tisition of

" acceptable preferences is ,'overe,l ,tr,,Dr the '.}scus.-.i(m (>f ,>perator

acquisition in Section 3.1.
Za

.-ks with knowledge about performable actions. ,'hunking can turn ps-

retrievable preferences into k*-retrievable preferences, and ('onvert

unretrievable preferences into ps-retrievable and k*-retrievable

preferences. The most common way to turn ps-retrievable preferences

1990013581-029

.TowardstheKnowledgeLevelinSoar Pqe 24

into:k*,retrievable ones involves a look-ahead search. This process has

been described in detail elsewhere (Laird. Newell. & Rosenbloom. 1987).

but the essence is to use Soar's basic _earch capability along with

knowledge - about how to evaluate states, how to back up evaluations to

earlier operators and states, and how to generate preferences from

evaluations - to generate, and thus learn via chunking, preferences about

operators that have tied for selection.

AS demonstrated in (Golding. Rosenbloom. & Laird. 1987). it is poesible

to use external advice to assist in the process of converting ps-retrievable

knowledge into k*-retrievable knowledge. If advice is given about what

alternatives are good (or bad, for that matter), the advice can be turned

into preferences which guide the look-ahead search. This can reduce the

amount of search required without changing the chunks that are learned

for the search. Externally provided knowledge can also be used to shift a

piece of control knowledge from unretrlevable to k*-retrievable using the

techniques described in Section 3.1 (Yost ,_ Newell. 1988).

8.8. Action Performance

As mentionedpreviously,Soar does not have a single,architecturally

interpretablelanguageforactionperformance.Instead,thereareseveral

distinctways ofrepresentingactionperformance.One way to represent

actionperformance,atleastforexternalactions,isassome combinationof

motorcommands. Retrievalof motor commands intoworkingmemory

causesthe associatedmotor systemsto behavein appropriatefashions.

1990013581-030

There is a fixed language c_I' motor ,'onlmands. :m ,i,_t,_rmine,t !x "h_,

:wailable mot(,r .,y_tems.

._. secom[way t()rp[)rP,_ent action pert'c)rmanee i,_ :> a <lbprc),',.,iur, that

performs the actio,_ when _.xeeute, i. In .',oar t_rms, tile -uhpr(_,'e,t,_r_ is

the processing in a _ubgoa[that arises when the results <)f performin_ the

action are not k*-retrievable. Within the subproce,ture, the types ,)f

,procedural knowledge ,ieseribed in This section w_uld t,_ applied

recursively.

A third way tc_ represent action performance is as the -.tare that results
,r

from applying the operator representing the action. .-ks with operators.

• the entire state ,:an be stored in the actions of :, single production (k-

retrievable), it can be distributed across the :tctions c_f a group or

productions that all fire within a single decision ,..vcle Ik*-retrievable). or

it can be distributed across multiple productions that fire under ,lifferent

circumstances (ps-retrievable). The ps-retrievabie ,':t.se corresponds to the

representation of action performance as subproceiures that is described

above. Such a procedural representation - that i,. representation as a

subprocedure, rather than representation or a proce,lure - can actually be

used for any piece of knowledge, whether the knowledge is itself about

procedures or not.

The primary context for the retrieval of a result state is the conjunction

of relevant features of the previous state and the operator. The result

n

1990013581-031

Towardsthe KnowledgeLevelin _osr Pa_, _ql

stage is used as the baals for further problem .¢,oh'ing. by serving as part of

the retrieval context for goal testing, result generation, state and operator

evaluation, and operator generation, selection, and application. The result

state's acceptable preference is used by the decision procedure to select the

state as the current state..ks mentioned in the previous subsections, other

knowledge may also use the preference prospectively to determine what

state is going to be selected, and retrospectively to determine what state

was selected, and what operator and state preceded it.

Acquisition of result states occurs by the chunking of problem-solving

episodes that generate such states. One of tlze most common ways to

acquire a k*-retrievable result state is to chunk over the process of

executing a procedure that represents an acticn..-ks with the acquisition

of knowledge about control, external advice can be utilized to speed up

the process of acquiring knowledge about lction performance. In one

version, demonstrated for subtraction. Ti:-Tac-Toe, and simple block

manipulation, the system starts out with a set of primitive operators that

are sufficient to implement the individual tests and modifications made by

any operator. Advice is then used to det.,rmine which elements the action

should test and generate for the specific operator being acquired. Given

the primitive operators, this approach allows arbitrary operators to be

acquired from advice.

Another way to acquire knowledge abou; action performance is to chunk

over the process of interpreting an externally provided description of the

-- T

i

1990013581-032

action, as in (Yost &"Newell. 19'_._1. The process procee,ls mu_'h :l..-,!i,t r i_,.

,.orr,_pon,lin_ ,me in _eetion 3.1. where in this e,_e. one ,_r m(_r,. ,'hunk:

are io._.rne,t That ('all re[rieve the l',._¿it -_:tte in the I'ut lro.

3.,t. Summary

Procedural knowledge appears to be adequately' supported by the ,'urrent

architecture. This should not he toc_ surprising as it was _riginall.v

designed for this: or at least l'_r representing problem-solving knowledge.

One :aspect that might ccmle as a .,urprise is that productions, though the>

are a primitive form of action, are not the model for action - operators

• are. Another possibly 'mrprising aspect is that there is no single

architecturally interpreted operator language. The fixed operator language

common to most systems is replaced hv the abilir.v to perform operators

by memory retrieval - either k*-retrieval or ps-re,rieva[- in conjunction

with motor commands. The flexibility of This approach allo',v_

performance knowledge to be represented either directly in action form ,,r

as declarative structures that are interpreted. I:, fact. with the aid _I'

software interpreters it should be poss!ble to eonsr r,_ct arbitrary operator

languages. One example of such an approach is the language and

interpreter used in the task acqu!sition work.

Learning has an important, place in the use of procedural knowledge. By

converting ps-retrievable knowledge into k*-retrievable knowledge, it can

improve the system's ability to retrieve relevant knowledge under real-

time constraints, and thus improve the system's approximation to the

" 1990013581-033

Towardsthe KnowledgeLevelin Soar Page_._

/

p'"ri_[_of rationality.Itcan convertinterpretedbehaviorintodirect

action. It can alsoacquirenew knowledgefrom the outsideworld.

allowingthesystemtoexpandthetasksitcanworkon and theknowledge

thatitcanuseon thosetasks.

4.EpisodicKnowledge

Episodicknowledgeisknowledgeaboutwhat hasoccurred.Ingeneral.

theindividualelementsofepisodicknowledgecan be viewedasinstances

of a binarypredicate.Occurred(a:.y),where x isan object,action,or

sequenceofactionsthathasoccurred- forsimplicitywe willrefertoall

suchmembersoftheclassofthingsthatcanoccurasevents- and y isa

contextinwhichtheeventoccurred.Two loosebutillustrativeexamples

are Occurred("gaf'*,MListI of Experiment2").which denotesthat a

particularobject(thenonsensetrigram"gala)occurredin a particular

context(duringthe firstlistof experiment2),and Occurred("pull-knob

then turn-knob"."settingtime on watch"),which denotesthat a

particularsequenceofactions(pullingoutofthewatch'sknob followedby

turningofit)occurredina particularcontext(thesettingofthewatch).

There aretwo notablefeaturesabouttheroleofepisodicknowledgein

Soar. First,episodicknowledgecan be representedat many different

levelsof explicitness.Second,althoughthe representation,storage,

retrieval,and u_ of episodicknowledgeisratherstraightforward,the

acquisitionofsome formsofepisodickn)wledgeisquitechallenging.It

leadsus to positthe existenceof comparativelycomplexstrategiesfor

1990013581-034

Toward: the Knowl,_,l_eL,-v,_tm :,oar P_ '-':)

:_cquiring these forms of episodic knowl_,i,ze.

4.1. Representation

One way t,> represent _-pisc>,ii,' knc>_l_,l_e i_ .<mlpi_,ely a.-,I,.dar'ltiv+,

_truetures: that is. as ,>b]eets with a_tributes and v:_lw,,,. In -,m'h :l

representation, the above two examples might appear as follmw.

(occurred el '_vent ol "('ontext ('1)

(object ol name gaf)
(context el experiment '2 list 1)

(occurred e" "(_vent .sl 'context c..'}

(sequence .sI action I ,t I action2 ,,.q
(action al name pull-knob)

(action a2 name turn-knob)

(context e2 "name setting-time-on-watch)

However. not all of this knowledge need be represented directly

declarative structures. The alternative is to omit -ome of the components

from the explicit representation, and assume thorn implicitly by default.

The key to makin_ this work is an understanding ,,t' the _'pisodic nature of

chunking: that is. that chunks are acquired as ,he r-suit of problem-

solving episodes, and execute in contexts that ar,o similar to the ones in

which the}" were learned. Spinning out thp ,'onsequences of this

understanding leads to a sequence of ways of ,,),fitting and modifying

components of the representation.

The first component that can be omitted is the context. The conditions

of a chunk represent both the contex_ in which the information was

learned and the contexts in which it should be retrieved. Therefore. when

I

1990013581-035

trowar_ theKnowledgeLevelin ",oar Pa._e30

informtttion ls retrieved from long-term memory it can be assumed that it

was learned in a situation that was similar to the retrieval situation.

Eliminating the explicit context from the example above leaves the

following explicit structures.

(occurred el "event oi)
(object ol "name gaf)

(occurred e2 "event 81)
(sequence 81 "actionl ol "action2 a2)
(action al "name pull-knob)
(actior, a2 "name turn-knob}

The next component that can be omitted is the occurred predicate.

which, now that the context is removed, just states that its event

occurred. If it is assumed that all knowledge that is retrieved from long-

term memory got there via chunking - even if the system starts out with

a number of productions, after sufficient time nearly all of its productions

should have been acquired by chunking - then it can be assumed that any

structures retrieved from long-term memory must have been seen before.

Therefore. the explicit predicate can be eliminated in favor of the

assumption that anything that is retrieved has occurred. Eliminating the

occurred predicate from the example leaves the following explicit

structures.

(object oi "name gaf)

(sequence sl *actionl al "action2 a_)
(action al "name pull-knob)
(action a_2"name turn-knob)

I

1990013581-036

)
The episodic knowl_,dge :_bc)_lt rh,-. zaf ,-'vent i.- nmv r,_pr,.-,mr,.,7 a_i_.

,imply as a r.,.'pic:d S()ar (_hje_.t - :d[-tr_t,'tures that v.ero intrc_,tuc,.,i -. L,ty

f.:-r th,-.ir r,,I,, in repr_-,,,ontin,-, ..l,i-.),lic kncr,,.l_,lge Imx- i,o,-,n ,t-i,.t,, I'!_i-

i._ thu¢ its final form. llmvov,.r.f.)r the _tatch ,-.vent. two a,iditi(mni .r,[,-

are needed to ('(revert its :u'ti(m -_qttence into its final t'()t'm. The t'_t'_t

._tep involve,_ a change in nomenclature re replace actions with _[,erntor_.

Operators are intended to r%,ro,_ent actions that can .t? , orfi)rme,t rather

than actions that were perf_)rnl_.,t.],air the assumptions ma_l,_ _:, far impl.v

that if .m operator is rotri_vo,t in :t ,'ontext then it must have t,oen learne, t

in a -sim',lar context. ¢)p_v':v_,r', ,'an Therefor, _ stand in for actions that

have oceurred. Xlaking thi._ ,'hange ,_liminates the need for creating new

..structures to explicitly repre._ent actions that have occurred, using the

existing operator structures inste:_d.

(sequence .sl "operatorl ,11 ,_perator2 a2)

(operator al "name pull-knob)

ioperator ,2 name turn-knob)

The ,_eeond. and final, step i'_ t¢_ r_plaeo the e',:¢_ii,'h ropre'_entation ¢_1'

operator sequences with preferences. .-ks mentl, me, t in the [_revicms

section, preferences can be used r_trospoetively to !otermine what ¢)bjects

were selected. Through their ,'¢mtext fields - ti,.. goal. problem-_.pace.

state, and operator fields - the.,,' can also be ,t._o,:t to ,tetermine what

objects were current in the context at the time the object was -_eleeted.

The following receding of the example represents that ()perator ,_1 was

acceptable in the situation characterized by gl. pl. and .sl: that .,.tare ._..'

1990013581-037

Tow_ds the Knowled&eLevelin Soar Pa&e;_2

w_,-_*ceptable in the situation where operator al was additionally selected

(it is al's result): and that operator a2 was acceptable in the situation

where state 81 has been replaced by state 82.

(preference al "value acceptable "role operator

_goai gl problem-space pl "state 81)
(operator al "name pull-knob)

(preference 8"2 "value acceptable "role state
*goal gl problem-space pl "state 81 "operator al)

(preference a2 "value acceptable *role operator

"goal gl problem-space pl "state 85)
(operator a2 "name turn-knob)

As was true of the gaf event earlier, the watch event is now represented

without the use of any structures introduced solely for their role in

representing episodic knowledge. The explicit structures that are left may

actually be larger than some of the previous (this is not true of the gaf

example), but they are structures that are already available because of

their role in problem solving. This is thus Soar's native form of episodic

knowledge. The significance of this is three-fold. First, this is the form of

episodic knowledge which is available without positing additional

semantic_ (or apparatus). Second. this form of episodic knowledge will

always be around anyway, so it needs to be taken into consideration.

Third, because it posits no additional apparatus, it should automatically

comlxme well with the other capabilities in the system.

1990013581-038

4.2, Storage

The manner t' -:,,ra_e ,)I' _pisodic knowIP,i_ is :, :,,netl(m .4' ,he

representatic,n Thai _- _l_,t. (_)rllpc_nelltS that ar_ ,tireerly F_'pr'_°'_'llfO,t :l.",

,teclarative srrm.turo_ ._ro -.t_>rP,t in the actions ()t' producti(m.,. The "_af"

example [night _,e -toro,t if: a productiop like the folkmin_ },,r tero_s

multiple produeti(ms p._

(occurred <'el.> -w, nt _o1.> ,'ontext _c1.)}

(object <o1> ,lame gaf)

(context <','1_ ,.xporimont "2 list 1)

Though this {,r(),t,l,'ti(m i- -hewn without ('onditions. :m ,teseribed in

Section 5. it is nee,_'_,,ary !and possible) to add additional conditions to

restrict the situations in which _uch declarative structures are retrieved.

,f

Assumed parts are qmply ()mitted from the ae;ions. However. for the

context assumption to work. a representation of the context must appear

in the conditions or' the production. This doesn't allow the o(mtext to he

retrieved as an explicit ,:tructure. but ,ior-s ,'onstrain ,he_.xpli,'it structures

to he retriev0d ,rely in contexts similar t,, the _,,e.-, in _hi,'h the.'. were

learned. The "gaf" example above woul,t be stor,',t a.,s a pm, tuction like

the following one.

(context <'rl_ "+,xperiment '2 "list 1)

--> (object_oI) "name gaf)

4Symbols _.nclosedin an_le brackets, such_ el ">,are variables.

I

•- 1990013581-039

TowardstheKnowledgeLevelinSolw PaP

a_r,.., "

Explicit episodic knowledge is retrieved in the same way as are other

declarative structures; that is. by a combination of k*-search and ps-

search. Omitted components are retrieved by assumption. If the context

of occurrence is omitted, then it is assumed to share critical featur_ with

the retrieval context, if the predicate is omitted, occurrence is am_med

for retrieved information. If actions are omitted, operator retrieval is

assumed to denote an action that was executea. If sequence information is

omitted, preferences are assumed to denote sequences of operators and

states that occurred. _

4.4. Use

There has not y_t been a great need for episodic knowledge in the tasks

that have so far been implemented in Soar. Nonetheless, it has been used

in several distinct ways. One way is the t_e of preferences a_ the basis for

a form of chronological backtracking - a short-term episodic use in which

the preferencesremldnin workingmemory throughout.Soarnormally

backtracksin look-aheadsearchby terminatingsubgoalsthatleadto

failure.However,therearetimeswhen Soar thinksi!knows what itis

_-- so no look-aheadsearchisbeingperformed- yetfailurestill

Backtrackingunder thesecircumstancesinvolvesexaminingthe

acceptablepreferenceforthestateat which failureoccurredtofindout

whichstttewu currentwhen thefailedstatewas selected.Thisprior

stateisthenreselected,and problemsolvingiscontinued.

1990013581-040

!

"['owards the Knowted¢, [.-_-! in ".o3r _>_E..A'.

A seconduseisa.-:thebasis!'(_rr_eo_ai_i,mawl r*-,':dltask_(R_;..,_!_t,i,,,,m.

Laird.X .x,owoll.1987.Rosenhlo,ml. l.:tir,l.,\ NPweI}.19Wx:_j.Ill._

recognitiont:L,_k_he ")",IPIll]" !.re-,'III'_'l,,-irh.,ii:t ,,i"]r,*lll-r.. ',,,.

memorized.ItiS then [,roml.,t_",lwith:_[litomwhich may ,_rmay ll_{I,,,

in the list. Its ta_k is _<__.ay g,'._ it"the item was in the list and no if i{

wasn't. A recall r_k is -qmilar. trot in_tea, l of hein_ prompt_,,t with :,n

item. the system must produce as many (_t'the items in the list as it _'an.

without producing items not in ,he ii-t. These tasks r_quire _pisodie

knowledge because rhe.v :t-,k ,tue_ri(m: :_hout what happened in the

system's past.

A third use is as the basis for the transfer of procedural knowledge. The

procedural knowledge that .-.oar learns can he viewed as really being

episodic knowledge about the past behavior of rhP system. To use this

episodic knowledge as proce,tural knowledge, there is an implicit

:_sumption)hat what is descriptiv,:. ,,t' the pa,_ is normative for the

t'uture. This assumption is maintaine,t until it lea,f, t(; an error. :_t which

point the system attempts to recover by doing som,*thin.¢,other than what

is directly dictated by its past experience (I,aird. l.q_.8).

The issue of errors is actually a key one when native episodic knowledge

is used. because, whenever an assumption is made. the possibility for error

creeps in. There are four classes of situations that can lead to errors.

Someof these are intrinsic in the natur of the world, while other_ arise

because of specific architectural commitments in _oar. The first clas_ of

1990013581-041

Towards _he Knowlpdte L_v,I on ."oar Page 36

i

errors arises because of mistakes in credit assignment, goar cannot

examine the ,,,_nditions or' productions, so when knowledge is retrieved it

can only guess as to which aspects of the retrieval context were -:bared

with the context in which the knowledge was learned. This can lead to

both errors of commission and omission. Suppose. for example, that the

system is winding a watch at the same time it is trying to recall the

elements that occurred in list. I of experiment 2. It will retrieve both

"gaf" and "pull-knob then turn-knob". The problemis that there is no a

priori reason to assume that one of these events is in the list and that the

other is not. In this particular case it might be able to use background or

other contextual knowledge to reason that the watch events were not part

of the list. but in other cases it may not be so lucky.

The second class of situations arises because of mistakes in context

generalization. There is a trade-off between the ,_cope of applicability of

knowledge and its utility _ episodic knowledge. The more general is the

context, the more situations in which the knowledge can be retrieved, and

thus be available for use. However. increasing the generality also

decreases the ability to discriminate the situations in which the knowledge

was originally learned from related situations. This can be seen clearly in

the acquisitionand useof controlknowledge. The more generalisthe

controlknowledge,the more search is eliminated,assuming the

generalizationis correct. However. generalityalsoimpliesthat the

knowledgewillbe retrievedin a varietyofcontexts,many of which are

1990013581-042

" Towards the Knowl,.',t='_' L-',,-'I m "oar Pa_e .$.

only remotely like rite one in which the i,;nowle,iCe was iearne, t.

"['he thir,i "(:L-_.-,,ff .,itlraticms :¢t'ise., i,e,',m.-e ,it' tnistake¢, in ut_'tm_ry

attribution. The (rely ,.xaminat-_le -tructures in >oar :tre those in its

working memory. :',uch _qrm'tures ,.'_mld arise from rnemory retrieval.

from intervention by the architect;:rc (the decision procedure). ¢_r from

perception. Only those that :arise from memory retrieval embody episodic

knowledge. Normally this ._houl,:tn't he a problem because the decision

procedure and perceptual _.wtems each ,'rpate ,structures in a characteristic

fashion: the decision proeed,lre only modifies certain special attributes of

goals: perception alw:a.w ad,ls its _tructures to special attributes of the

state in the top context, However, the possibility remains.

The fourth, and final class of situations can be ,'aus,_d b,v any' of the first

three. It occurs because of mistakes in co-occurr,mce attribution. _uch

failures occur when the system mistakenly thinks it has previously

experienced an event :.... :ruse it has experienced all ,,f it,, individual pieces.

though never all as !:,r, of a single ev,mt. Supg,-,'. I'_r example, that in

one context the systen_ -,.es a large ball. and in a -itnilar coatFxt it sees a

green ball. A co-occurrence error occurs if the sy,qem thip, k:s that it saw

both in the same context, or worse, that it has seen ,',.'_ingle large green

bail. In the recognition and recall tasks this prol-,i,',.m is partially dealt

with by assuming that k*-retrievable objects ha,,',:,, been experienced, while

ps-retrievable and unretrievable objects have p,ot. The rationale is that

k*-retrieval, being a limited computationat mechanism, has a limited

1990013581-043

TowardstheKnowledgeLevelin_oar P.a_e3S

ability to put things together in novel ways. while ps-retrieval :fllows

arbitrary structures to he created.

4.5. Acquisition

Episodic know[edg;e is acquired by chunking problem-solving episodes.

Though this is somewhat of a tautology for Soar. it is not always as simple

as it sounds. The simple case is the acquisition of episodic knowledge

about objects generated in subgoals. If such objects are returned as

results of their subgoals, then chunks are c.reated which can later be u:ed

as episodic knowledge about the objects. The variety of subgoai results -

objects, operators, preferences, etc. - leads directly to variety in the

episodic knowledge that can be learned.

Under normal circumstances this episodic knowledge is represented in

what we have referred to as native form: that is. predicates, contexts.

actions, and sequences are represented respectively by chunk _xistence.

production conditions, operators, and preferences. However. if the system

monitors its own performance, and creates declarative structures

representing what has transpired, then the chunks created for such

structures can be used as explicit declarative-form episodic knowledge

about what has transpired. In addition, such chunks can be used as

native episodic knowledge about the monitoring process itself.

One form of episodic knowledge that cannot be handled this easily is

knowledge about what has happened to che system: that is, knowledge

i

1990013581-044

• To_ar,1.-CheKnowl,'dgeLev,dm _,oar P:_¢e,_,_,1

about what the system has perceived rather than knmvle,t_e :_t-,,mt _ilat

the ,,.v_tem has _enerated. The "zaf" ,:×ample presente,i abow i'- "_r3pic:_i

per,'e.,.:,_ml ,-vent. The -l, is<>,ti,' knowle, t_e _o t,,_ :icquire,t }- :ti,,_,l_ :h,"

perception of "gal'" in -_ particular ,'_mtext I_'xperiment "2. li_t 11. \-

,tescribed in Section l. Soar_ i{lput mechanism attache'_ perceptual

information to the state in the top problem-solving 0ontext. [n ,_rder for

information about the event to he stor,_d into long-term memory b.v

chunking, an internal episode must be _enerated in which this perceptual

information is used.

For perceptual events it is relatively ea.sy to acquire a form of episodic

knowledge akin to a familiarity test. The system must simply chunk over

a subgoal in which it examines a representation 4" the perceptual event

and the context, and generates as a subgoal result an occurred predicate

covering them (Rosenbloom. Laird. k Newell. lg_7). .-k familiarity ('hunk

for this example might look like one c_f the foll,,win_ two pro_luctions.

depending on whether the context is explicit or no_.

(object <o1> "name gaf)

,context <cI.> "experiment 2 "list 1)

(occurred _el.> "event <o1.> "context <e l.> l

(object "name gar)
(context <¢1.> "experiment 2 "list 1)

(occurred <el.> "event <oi.>)

In the systems so far implemented, context is actually ignored in the

learning of episodic knowledge. By having no explicit representation of

o

1990013581-045

.Towardsthe Kno*'ledgeLevel in Soar Page 40

context in either the conditions or the actions of tile chunks, the context i._

effectively the entire history of the system. In this form. the "gaf"

familiarity chunk looks like the following:

(object 4o1.> "name gaf)

(occurred _el_ "event _o1_)

Familiarity chunks allow the determination of whether an event has

occurred before in a particular context. Whenever a representation of the

event appears in working memory along with a representation of the

context, an occurred predicate will be retrieved for them. Familiarity

chunks can thus support performance in recognition tasks, where the task

is to determine whether a presented object has been seen before.

What familiarity chunks do not directly support is the retrieval of events

that occurred in a particular context. For an event to be retrieved by the

execution of a chunk, the event must be stored in the actions of the

chunk, and not tested in its conditions. .A.retrieval chunk for the "gaf"

example should look something like the following (with an assumed

context and predicate):

(context _c1._ *experiment 2 "list 1)

(object Col> "name gaf)

For such productions to be learned by Soar, they must be created by

chunking over some form of problem solving. But chunking is not an

indefinitely flexible mechanism. A chunk's actions are always based on

'"......... 1990013581-046

• TowardstheKnowiedceL,wt =n",oar t'a¢,*11

/

the results of a ,_ubgoai. and its ,.',m,iitions are :_l_v:lv-_I,a.se,t ,,n

dependency analysis of the results. This imme,tiateiy imp,_e._ Tw,_

constraints ,m the natur# _I' thp !,roblem -,olx'in_ that ,':_n ,in,iortv the,

acquisition of retrieval chunks.

1. For the event to appear in the actions of a chunk, it must be
generated as a result ,_f a subgoal.

2. For the event to not appear in the ,'onditions of the chunk, the
subgoal results must not ,lepend _m an examination ,_1' the
event.

The first constraint is relativdy ,a.-:y to meet: for example, l)y creating a

copy of the perceptual f'vent in a -qlbgoal. and returning the copy as a

result. However. attempting to meet both constraints at once leads to t,he

• data chunking problem: if the result is based on ,,xamining the object to

be learned, then the conditions of the ,:hunk will also test the object.

allowing it to only be retrieved when it is already available. For example.

using the copying strategy for the "gaf" ,xample ,.voui,t lead u_ a chunk

like the following:

(context _c1> "experiment 2 'list 1)

(object _oI> "name gaf)

(object _o1> "name gar)

In contrast to the desired retrieval chunk, this (,he tests that "gaf" is

already in working memory before it will retrieve it. so it ,'loesn't do the

job.

The solution to the data chunking problem is to separate the result

B

I

1990013581-047

TowardstheKnowledgeLevelin "oar Page42

genersfion process from the use of the perceptual event. Result generation

must be based on what the _ystem already knows, rather than on the

perceptual event. One approact_ involves assembling the resuh from

components that the system can already retrieve (Rosenbloom. Laird. &

Newell, 1987). For example, if the letters "g", "a". and "f" are

retrievable, then "gaf" can be generated by retrieving and assembling

them. This is a syntactic compositional process which may or may not

respect any specific semantic rides in performing the assembly. Another

approach is to start with the context and to chain through a sequence of

productions which form a pre-existing, though possibly indirect, link

between the context and the event (Rosenbloom. 1088). For example,

(object ol "name gaf) can be generated if (context cl "experiment 2 "list

1) is already in working memory, and if the following two -etrievai chunks

exist.

(context _c1.> "experiment 2 "list 1)

(object _o1> "name fern)

(object 4o1.> "name fern)
--_

(object _o1> "name gaf)

Either approach requires the system to start out with a set of primitive

elements that can be generated. Other more complex structures can then

be built up out of compositions of these primitive elements. For the work

on recognition and recall, the system was initialized with the ability to

generate the 26 letters. Conceivably, Soar could have been initialized with

an even lower level of primitives, such as simple lines, curves, and points,

L

1990013581-048

from which it would construct the l_tt_r,_. [t ,',)ul,i :_b,(_ [mw i,,,,_,_

initialized with more meaningful primitive.,. -,ueh as the primitive .\(."l'-in

(,mc_pt,lal D_p_ndene.v "Fh_r.v t',cilank. 1.97.3i ,._r the ,'pi_r_'m,_t_i,':li

primitive'_ in KL-()NE (Braehman. 1.97.q!.

Though the peroeptual ,_vcnt ,.annot be used directly in the generation

process, it is still used in two critical ways. The first is a._ the basis _f a

goal test for the generettion process. The generation process can

conceivably return an)" event that it ,'an either assemble or chain to. so a

goal test is necessary to ,[etermine when the ,tesired event has been

generated. The straightforward approach of comparing the perceptual

and generated events does not work. Instead. it leads to a secondary

version of the data chunking problem in which the ,'omparison causes tests

of the perceptual event to appear in the conditions ,_f the chunk.

To avoid this secondary data chunking problem, the goal test is based

on a familiarity chunk for the perceptual event ratil-r than ,tireetiy ,m the

event. Given a familiarity chunk for the perceptu:d event, the generation

goal test is satisfied when a familiar but unreteiev-d event i,, generated.

The test of familiarity guarantees tl-,at the event has been seen in the

current eontext {or a similar one). If the went is unretrieved, it is one

that the system has not previously learned to generate. This test is

somewhat overgenerai in that it can't guarantee that the generated event

is a copy of the current perceptual event However. at worst it will only

genertti,_ a different ,_v,_nt that is familiar in the same context. If this

$

1990013581-049

Towardsthe Know}edgeLevelin Soar Pa_e44

happens, it is always possible to try again to generate an event that

corresponds to the input event. The use of a familiarity chunk as the goal

test for the generation process makes this is a generate-recognize approach

to recall (see. for example, Watklns & Gardiner. 1970). though focused on

the acquisition phase rather than the retrieval phase.

The second way that the perceptual event is used is as the basis for

controlling the search through the space of events that can be generated.

The goal test determines the correctness of the result, but does not affect

the efficiency of the sear _ [.'sing the perceptual event as control

knowledge makes the search tractable, potentially removing ali

backtracking, without affecting the correctness of the result. Thus the

result technically does not depend on such control knowledge. The

bottom line is th._t the use of search control knowledge can speed up

performance without introducing additional conditions into chunks (recall

from Section 1 that chunking does not bactrace through the use of

desirability preferences by the decision procedure). Of secondary

importance is that the use of the perceptual event as search control

increases the likelihood that the first event generated will correspond to

the perceptual event rather than to another familiar but unretrieved

event.

When the generation, goal testing, and control process are all put

together, a retrieval chunk can be learned that is identical to the one that

was desired. Context can be treated in the same ways that it is for

1990013581-050

i
I

O

It.

familiarity ,'hunks. It ,.an t,e ,xplidt iin the ,.ti(m_l..,,._,lm+.,{ ,in Tt_e.

,,onditionsl. ,,r ,',,mpi<,iy i._n_;r_,i m)x_h,,rf,_. Fh, ->_t,,ms -,, f:,r

implemonto,t have i_n,,r,_,t .',,ntoxr.

One conseq mn('e ,)1' rhi._ appr_)a('h t. the :_('q,lisiti,)n ,_f r_,tri_v:_l ,'h,znk_.

is that it forces informati(m -storage t() be ba.sed ,m :in un,terstanding

process. The understanding may be,rely ,ffsyntax (surface structureL (_r

it may be c)f a deeper -_mantic (,te_-p 'qruoture) nature. },,it without it.

learning will not ,),',"ur. "Ft:er_, b, n,) .-imple a.ssignment operation - -uch

as the SETQ ()perati(m in Li,,p - that allows an unanalyzed '_tructure to

be stored in Iong-,_rm memory. _. ,;e('ond consequence is that the

understanding process must be a reconstructive - or analysis-by-synthesis

- process (Bartlett. 193:2. Neisser. 196,). in which ,.vents are reconstructed

in terms of known structures. A third conseq,_,.nce is that the storage

process is semantically penetrable. Other knowb.,tge ,'an potentially alter

the reconstruction process. :m,t thus ',,hat '- ._t(,ro,t. lea,lin_ t_)

generalization and o_her forms ()f }i:ks in ,tL,_ file: ,_ry-trll('r,lr--, that ar_

stored.

4.6. Summary

Soar can represent, store, retrieve, use. and acq,,ire episodic knowledge.

However, the situation is nowhere near as clean and simple :_s it was for

procedural knowledge. In fact. if we were to ,qt down to design a

capability for episodic knowledge from scratch. Mth no constraints, we

would be unlikely" to design it as current[?" embodied by Soar. What the

W

1990013581-051

Towardsthe KnowledgeLevelin _oar Pa_.eItl

architecturemost directlysupportsisnadve episodicknowle,lge:,bout

structuresgeneratedby thesystemitself._uch knowledgeisrepresente,{.

stored,retrieved,and acnulredwithoutrequiringadditional,:c)mnitive

effort.However.theassumptionsrequiredtousesuchknowledgecan}ead

toerrors.By increasingcognitiveeffort,more exp}icitformsofepi._odic

knowledgecan be acquiredthatrequirefewera._umptionsforuse.and

thushopefully{eadto fewererrors.Such structuresare not terrib}y

dissimilartothestructuresu._d inotherepisodicmemory proposa{s,such

as Scripts (Schank and Abieson. 1077) and E-Mope (Kolodner. 10851.

The situation is even more complicated for episodic knowledge about

perceptual events. Three featuces of the architecture yield strong

constraints on how the knowledge is acquired.

1. Chunk actions are based on subgoa{ results.

2. Chunk conditions are based on the supergoal structures upon
which the results depend.

3. Perceptual information arrive_ in the top goal.

Together these features force a reconstructive approach to knowledge

acquisition. Though this approach is considerably more complicated than

simple verbatim storage of what has transpired, it does have a number of

promising properties.

Given the overall picture of episodic knowledge, as relatively complicated

and messy, it is important to ask w'lether this signals a need for

modification of the architecture. One key question is the appropriateness

|

1990013581-052

• Toward._rh. knowi_,d_pl.,eV,'l Jn ",oar _z,"17

of the levels ()f -rapport :_n(t ,.(m..Tr.,int rha_ nr'_ t,r, wi,i,.,i '!,..

nrehitof'tur_'. F_r t)syr'hol_)_, rhi._]_ ! matter ,,q"rh. ,,:(l,--nt r,, _hi,'il rii,.

l(_,.'et ,,f-ut,p(,rt Irt(-)del_ i_uman ,.:_p',_i,]i]ti,.-. :_n,t lhe I,.w,I ,,f ,',,_-,'r:dIl;

nlodel,s human limitations. [",)r .\[. ttii-, i- .,_matter ()t' wh,th,.r _h,.-v..r,.nl

aehiev,_s an appropriate l,_w,l ,)f ,.pi,,),tic functionality. .\ -_,',m,t k,ey

question is whether there "ire more appropriate mechanisms - f,_r either

definition of "appropriate" - for rh_ -,tpport of episodic knowle,t_e which

could b_- integrated cleanly in_(_ Th,. :,rehit_eture. Provi,iin_ ,l_tailo,t

answers to the_e two kpv _t_le_ticm,. l'*'lll:lill'_ ['_)r fHtlll'e w_)rk.

5. Declarative Knowledge

Declarative knowledge is knowle,lge about what is true in the world.

" Examples include the facts that ,t,)gs have ll)ur ',._s and that Fide is a

,tog. D,_clarative represeatation ,.(m_o_. in man.v l',,rms, such :_-snatural

language, diagrams, maps. rharts, tal,l_,., and _r:_phs. This i- :dso the

area with which logic is ,'lassieally .',mcern_,t. \ ,_i,' has :t -yntax

sp,_df.ving the form that -,tntemen,- 'ako. an,t :, :.._i,- '.vhieh r,.Irtt,.-

lo,zieal ,_tatem_,nts to an abstract ,.. u,',ptualiz:ttiol ;.. 'a rt,t. f:()r fir..t

or,t,_r predic'_te calculus iFOP('. ,i_e -_yntax '_.-,.,t n ,.onst::n_.,.

variables, predicates, connective_ (A. 7. -. and D }. :m,t ,luantifier,_ (V and

3). The n'tapping between the ,,yntax and the .,emantics. ,'alle,i the

interpretation, is used to determine the truth of ._tatements _xpr_ssed in

the syntax of the logic.

In this section we will be primarily concerned with the syntactic _dde of

u|

1990013581-053

Toward_ the Knowl_,dgeLewl in '._oar Pa_e 4_

t

declarative knowledge, taking advantage of Iogic's privileged role in .kl as

a language for representing declarative knowledge. We will examine how

declarative knowledge is represented (its syntax). _tored. retrieved, used.

and acquired. On the issue of semantics. '::e will assume that the meaning

of a structures is determined by a combination of two factors: its

relationship to tile outside world, as mediated by the perceptual and

motor systems, and how it is used by internal processes.

.-kswith episodic knowledge, the main cha !enge will be in the acquisition

of declarative knowledge. The data chunking techniques described earlier

will be extended to handle declarative representations.

5.1. Representation

As with episodic and procedui,al knowledge, there are several different

ways that declarative knowledge can be repres,,,nted in Soar.5 The most

flexible and general approach is to represent each syntactic componer:t -

whether it be a constant, variable, predicate, connective, or quantifier -

as an object. The details of exactly how this is done are not crucial, but

the general flavor should be clear from the following example which shuws

a statement in FOPC and how it could be translated into a set of objects

in Soar.

51n this section we focus on derivation-based represcntltioM for logic. Other

representationsarepossible,suchu validity-buedtechniques- _,_, for example,(Polk &
Newell,1988)sad (Polk. Newell.& Lewis.1989)i'orresearchon ,ztentalmodelsin Soar.
Thesehavesomewhatdifferentproperties,but muchof the discu_sic,n would remain the
same.

1990013581-054

V x !PIzi Z (),_i

,luantir_'r "/ t;am_. :'_r'li{ :"_ri:,},i- _i I,',{v /_I_
v:_ri:ti,b, , / ;ram,. ',:_

,',mm.,'Tiv,. Lt :_:tm,. iini,{]+.- ,li[,.,',.,iPn_' ,ll ,',m t,{.'z;t .:.

Dr_a,ii_':[/e ,/1 [l:iI|l¢, ',. .tr_llnl_[]i t i{

[)re,{]r'at_,'I ll:tlll," 'i :if'_tlrlletl[t])

For .qmplu .t:_t_ment_ ,',)n_aining no quantifiers ._r x:_rial,le._, n<>

predicates with more than two arguments, and no connective,. ,.xeF,l)t for

A. there is a 'qmpl,-r natiw, r_.pr_,.sentati, n that takes ,tire,', :_,lvanta_:e ,,,f

Scar's ,>bjec_ ._truelure. (,m.qants :_r_ r_prPsent_'d -is ,)bjeet "a. I:,r_dicates

as attributes, and c,mjuncTi<m :m sinluilaneous oee_lrrenee. Here'.s a simple

example about Fi,to.

Categoryl l-'ido. Do_) A Alive(Fido)

(object ol "name fido category og alive)

(object ca name ,tog)

This native repr_"_entation is more 'q_ceinct _han _he ,,,_e al_,w_,. I,ut in

exchange it lacks ,*xpressibility.

Ano, her variation i,,to use production.- :_-.a repr n_:_,]on f,)r :_ ,,ubc}&ss

of implications. A production can represent :, ,_nix_-rs:di.v ,tuantified

implication in which the antecedent is a conjuncti<._. _)t'pre, iie:ttes, and the

consequent is an existentially quantified conjunction ,,_fpr,_dieates.

V(x_.....x,)[('ti.r _.....x,,)A ... A (.'j(zz.....x,,) .C'
(....._,,,)_._,,(z_......,,._,....._,,,,)A ^ ._,k(a-_.....z,,._....._)l]

The existentialquantifierin the consequent aris,_, from the abi}ityto

create new objects ,,,,'hen variables app,'ar in a_tions that are not in

1990013581-055

,Towards the Knowledge Level in _oar Pate "_0

conditions. A form of negation as failure is also available in the

antecedent which allows a predicate to be assumed false unless it is

explicitly known to be true {that is. available in working memory).

Implications encoded as productions are non-examinable and can only be

used to forward chain. We will not discuss them further here. Instead we

will focus on examinable structures of either of the first two types.

5.2. Storage

Storage of declarative knowledge is straightforward. .ks with

declaratively represented procedural and episodic knowledge, declarative

knowledge is stored in the actions of productions.

$.3. R_trieval

Declarative knowledge is retrieved by k*-search and ps-search. If the

knowledge is stored directly in productions, k*-search can retrieve it.

otherwise ps-search is required. Hopefully. by this point, this is obvious.

However. less obvious is what the context should be for retrieval of

declarative knowledge. The retrieval contexts for both procedural and

episodic knowledge are straightforward. An element of procedural

knowledge is recrieved when it may be needed to produce behavior. An

element of episodic knowledge is retrieved when a context is established

that is similar to the one in which the episode occurred (at least if the

context is tested in production condEions rather than stored in production

actions). In contrast, declarative knowledge is by its essence not

1990013581-056

tt

"['.¢_'+_r t- r:1+ {'s.nt)v.'['+<'lg;e[.,+x,-q tn ",+_ar 1'+¢+ -,t
q

]

associated with a particuiar <'ontext. "l'hP knt.+wie,l_e i- tr;to, iti,l,.p,.tl l-i_'

+)t' ,'_'_'lteXt. ;iIl,t '_hould be usable in :lily ,',_ntvxt ro,tuirin_ if.

On the _)ther trend, it' ,ie,'lar-vivo kno_l_,ize b..,tore,t _ith n_, ,'_mt,.xt -

that is. with a null bet _,f t,rc>d_leti_m _'tm_titions - th_ knowi.,l_e will t_,_t

only be retrievable in all ,',mtexts. it will in fact be retrieved in all

contexts. ,_wamping the system with true but irrelevant information. One

approach to controlling the rmri_','al ,_f ,l_elarative knowled,,e i._ tc_ use the

<'onnectedness amon_ l':l_'t-_ :t.'- :l ,'+_rol_v:tn('_ heuristic. Thib is ,_l't_.n

implemented by the me<'hanisni ,_t' -prea,ting activation, which retrieve.,

facts close to those that are alroa,iy rotrie,.od {Collins & Loftus. 197o.

Anderson. 19831. Another approach is to centre', the retrieval of

declarative knowledge by providing a partial des,.r!ption of the knowledge

to bo retrieved (Norman & Bobrow. 1.q79). The :,artial description then

,telineates the ,,el of things which apl:,ear t+>I_,orel,.v:mt.

The appnmoh that we have taken is t¢_ -,tore ,ie.'iarativo kn<,wle_i_o lt_. '_

diserimin:ttion network that allows retrieval t' c>l-,jeots t,v [+artiai

description (Rosenbloom, Laird. _k Newell. 198_:_. Given :tny partial

description, a single object is retrieved along with tae facts about it. The

construction of this discrimination network is ,tiscussed below. ,lnder

acquisition.

One last important aspect of the r_,'ieval _t' ,teclarative knowledge

concerns the basis for believing that structures retrieved from long-term

I

1990013581-057

TowardstheKnowledgeLevelin Soar Page 52

memory represent true facts about the world. This belief must be based

on the implicit assumption that the s.vstem knew what it was doing during

the episode in which the structures were acquired. In other words, the

system must trust its past behavior. This is one form of assumption that

cannot be completely avoi,_ed by adding more explicit structure. Even if

explicit true-in-world annotations are added to all -:tructures representing

true facts about the world, the system must still trust that in the past it

only added such annotations when the facts were true. It might be more

"careful" about adding such annotations than it is about adding

structures to working memory in general, but since there is no oracle for

truth, it is still assuming that these annotations were added correctly.

This assumption that the annotations are true is of the same type as the

original one. It may localize the assignment ,_f trust, but can not

completely eliminate it.

5.4. Use

Declarative knowledge has a multitude _)f use_. It can be used to

describe procedures so that they can be reasone,l about, or followed

interpretively (from which native procedures can bP compiled). It can be

used to explicitly describe episodes. It can be used to describe knowledge

whose function is not yet clear. It can be _lsed as the basis for

memorization tasks. A complete list would go on considerably longer, but

this gives a sampling of typical uses.

1990013581-058

" , Towards _n_. Knowled_- I._',-i _n ",,Ir I':1_ .;._

5.5. Acquisition

The acquisition _f ,Ieclaratiw knowiedae ha..; much in ,'_mlm,,n with rh.

acquisition ()l",_piso_ti,' kn<)_io, tge. l)ee!arativo kno_vie, t_o that i- a"ll_r:lte,t

as the result of a pmk, lem -oivin_ episode is direotl.v aequire,t t,v ,'htlnkin_.

with a retrieval context that ,'orrespomls to those _'lement,_ _t' the .qtuation

on which creation of _he knowledge ,{epended. Likewise. th# :u'quisiti(m of

perceptually originating declarative knowledge utilizes the data chunking

solution described in s_eti_m t..5. Though. to go b%'cmd the types of

structures acquired in the ,'_search (m episodic knowledge. Soar was

initialized with primitive _lements for the 26 letters, plus a set of primitive

attributes (isa. has. ,'olor. response, letterl, letter2, letter3, letter4, letter.5.

letter6, letter7, letterS, !etterg. letterlO), s l'sing these primitives, facts are

represented by attributes relating named objects. For example, lsa{Fido,

Dog) is represented hv the following structures.

object <'f> lptterl <fl> letter2 _f2> letter3 <'f.¢>

"letter4 <fJ> "isa <'d>)

letter <fI> name t'/

letter (f2.> name i)

letter <f:].> name d)

letter <'f./.> name o)

object <d.> letterl <dl.> letter'.) <d2> i_,tter3 <,i.¢>)
letter <dl> name d)

letter _d2.> name o)

letter <'d&> name g)

This is a variation on the native representation ,tescribed in "5.ection .5,1.

The primary difference is that names, which were unanalyzable atoms in

6Infutureworkwe willheexamininghow tolooaet,up therequirementthatattributes
be pre-existing primitives as well a, investigating different levels of primitive elements.

/

w_

II

1990013581-059

Towardsthe Knowledg;eLevelin ",oar Pa_e._4

the earlier representation, have been expanded out to where their iaternat

structure is open for examination and creation.

There are a number of ways in which the acquisition of declarative

knowledge is more complicated than the acquisition of episodic knowledge

in Soar. We have so far isolated three additional issues that must be

resolved in the acquisition of perceptually originating declarative

knowledge. 1!) How is a discrimination network to be acquired that can

control the retrieval of declarative knowledge? (2) How is knowledge about

objects acquired incrementally'.' (3) How do chunks store the components

of an object?

._ mentioned earlier, utilizing the data chunking solution alone results

in the acquisition of context-free declarative knowledge. 7 Acquiring a

discrimination network thus requires an augmentation of the basic data

chunking solution. Abstractly, the approach is to modify the simple

memorization strategy underlying data chunking so that the acquisition of

new knowledge involves relating tile new knowledge to what is already

known. If in the process of establishing relations, an explanation is

created as to why the new knowledge is different from similar existing

knowledge, this should lead to discrimination. Similar processing could

lead to generalization, or other alterations of the new knowledge prior to

7Thereis a corresponding,but not identical, i_ue for perceptuallyoriginating episodic
knowledgewhich has not yet been addressed: how _he situational context is incorporated
into chunk conditions.

1990013581-060

its being stored {An,lets on. 1086. Rosenl',loom. 19881.

The ,'urr,m_ implementation ii_ ",,mr _.,_s -uch a -trategy _,) l,_rl'orm

objeet-centerP,i ,liserimination. (;iwn :_ Ii_w ['act. --uch -_s IsatFi,io. D(_gi.

the system uses the feature.-: _)I' Fi,io t,_ -_e what object is retrieve, t from

the discrimination network, lr Fido is retrieved, no discrimination is

necessary. If some other object..,uch a.s Fred. is retrieved. Fido's features

are compared with Fred's to find a ,iiffer_nce. such a.s the letter "d" in

the third position of the name." This ,tirt'erence is then used as the

justification for generating :_ new ,.ymbol representing Fido. and for

rejecting Fred _s the ,_bject m he r_tri,wed. [f there is more than one

, difference, one is picked indifferently.

By thus loosening the prohibition against examining perceptual

knowledge during result _eneration. discriminatin_ ,'onditions are added to

retrieval chunks which control when the acquired knowledge is retrieved.

Schematically. the production resultiag from this process looks like the

following.

Retrieved(g35) A _ Rejected(gas)A lettera(,_aa...,)
A Perceived(p) A letter3(p, d)--> Reject(g35) A Retrieve(g37) (1)

This production says that if there is a retrieved, but not yet rejected.

object with symbol g35 and an "e" as its third letter, and the perceived

object's third letter is "d". then reject the retrieved object and create a

gin the current implementation, discrimination is always b_ed on features of object
names, rather than on other facts known about the object.

Oo

wb

1990013581-061

Toward-*theKnowledgeLevelin Soar Pa&e.56

new symbol (g37) for the perceived object. Each such retrieval production

forms one link in the discrimination network that is constructed as new

objects are perceived. This discrimination network supports k*-

retrievability - that is. retrievability by a combination of production

firings within a single elaboration phase - rather than the k-retrievability

that is possible for knowledge stored with no context.

Consider what happens when the following three facts are learned in

sequence, ignoring for now all c)f the learning except for the creation of the

discrimination network.

[sa(Fred,Cat)
Isa(Fido,Dog)
Isa(Carl,Dog)

First,Fred isprocessed.Becauseno objecthas beenlearnedpreviously,

no discriminationisnecessary,and theonlyactionto be taken isthe

creationof a new symbol forFred. Thisresultsinthe acquisitionof a

productionwhichgeneratesthesymbolforFredifno objecthasalready

beenretrieved.

', Retrieved() --> Retrieve(g35) (2)

Second, Cat is processed. Given the features of (:'at, tb.e symbol for Fred

(g35) is retrieved by production 2. As described below, the information

about Fred is cued off of Fred's symbol, so the retrieval of g35 leads to

the retrieval of what is known about Fred. Once this knowledge is

retrieved, Cat is discriminated from Fred. The system chooses

indifferently one of the discriminating leters of the objects' names - in

this case the second letter - yielding the following production.

1990013581-062

Towardsthe Knowied_ L_wl,r,-oar I' I_. _7
it1

u

Retrieved(gag} A - Rejected(g35) A letter2(g35, rJ
A Perceive,i(p}A lett_.r2(p.a}--> Rejectlg35),' R.rri_v_I_;_tii ,:_i

Third. Fi,to i- processe,l, Fred i_ retrieve,i and ,tiscrimix,,a[.,t fr,_in I"],t_,,

b.v the thir,i letter, yielding production I. above. F_mrlh. [)_ i-

processed. Once again. Fred is retriewd, and the discriminati_m i_ a_ain

based on the third letter, yielding the following production.

Retrieved(gag) A -' Rejected(gag) A lettera(gaS, e)
A Perceived(p) A letter3(p, g) --> Reject(g35) A Retrieve{g3*) (4)

Fifth. Carl is processed. This time Fred is retrieved and then immediately

rejected by production 3. which also retrieves ('at. (arl is then

discriminated from ('at hv the third letter..yielding the following

• production.

Retrieved(g36) A _ Rejected(g36) A letter3(g35, t)
. A Perceived(p) A letter3(p, r) --> Reject(g36) A Retrieve(g39) (.5)

Sixth. Dog is processed. Fred is retrieved, and th,n immediately rejected

by production 4. which also retrieves the symbol f_,r Dog. Because there is

no mismatch between the perceived and retrieve,i _)bjeets. no

discrimination is necessary, no new symbol is _,,nerate,i. and no new

production is created. At this point the _tiscrimination netw(_rk h'_,,s:the

shape shown in Figure 5-1.

Given a partial specification of an object nanw. the Cymbol for the

object whose name matches most closely - according to the structure of

the discrimination network - is retrieved. The knowledge associated with

the object is acquired with a retrieval context consisting of the object's

symbol. .-ks with episodic knowledge, this occurs by first acquiring a

w_

Q

1990013581-063

TowardstheKnowledgeLevelin_oar Pa¢_._,,_

°u

/

FRED

CAT FIDO DOG

3/r [

CARL

Figure g-l: Discrimination network acquired from sequence of facts.

familiarity chunk for the new knowledge, and then acquiring a retrieval

chunk which depends on the object's symbol.

Unfortunately, this approach depends on having all of the knowledge

about the object available at once. which raises the second issue: how to

incrementally acquire knowledge about objects. If the familiarity chunk

must recognize the entire object, as it does in the previously published

approaches, no learning can occur about an ,_bject until all of the

knowledge about it is available. Conceptually. the solution to this

problem is straightforward. Data chunking is applied to each fragment of

an object individually. The processes of familiarization and _eneration are

performed independently for each letter of the object's name, and for each

fact about the object. A._ an example, the individual familiarity and

retrieval productions for the first letter of Fred's name look like the

1990013581-064

To__rr_ _h_Kno_l,_d_eLev.qm -oar Page"_q

6

following.

letterllg35, f)--> Familiariletterll_35. t'i ,t_

Retriet,_,il _3.-)I ,_. - Rej,,('t,-,l{ _-;J.5J -- > let t,rl(g33, f) !7

The implementation ()t' thi_ -(_t_ltion allow_ new facts to },e acquired

about known objects, for example, that ('olor(Fido. Red). However. what

is given up in going with this solution is the abilit.v to use familiarity

chunks to directly perform recognition tasks. Object recognition must

now be based on multiple prc),tuctions. The ,)bvious way to do this is to

sort the object through the ,li,,'rimination network. If the new object is

the same as the one stored in the no,te at which ,liscrimination ends. then

it is recognized.

The third issue is how references to learned objects should be stored in

retrieval chunks. For primitive objects, such as the letters, the answer is

simple. The value is stored directly in the actions ¢_f the retr_,'vai chunk.

as shown in production 7. However. for value', that are objects, the

situation is more complicated and leads to t sequenced pair of

discriminations, similar to the approach taken by EP.-k.M {Feigenbaum &

Simon. 1984).

Suppose the system has already learned about the object bej. a nonsense

trigram, and that the retrieval cue associated with bej is its first letter (b).

Then suppose that the system is presented with a paired associate (a

stimulus-response pair} in which bej is the response, for example

0o

1990013581-065

,TowardstheKnowleda;eLevelin oar PaEeq_O

Response(gal. bej). This pair would be represented as follows.

(object s "letterl 81 "letter2 8:3 "letter3 8:t "response r)
{letter 81 "name g)
(letter 82 "name a}
(letter 83 "name f)
(object r "Lettert rl "Letter2 r2 "letter3 r3)
(letter rl "name b)
(letter r2 "name e)
(letter r3 "name j)

If g41 is the symbol for gaf and g42 is the symbol for bej, the obvious

retrieval production to create for this pair (ignoring for now the retrieval

productions for the object's names) is the following.

Retrieved(g41) h ", Rejected(g41) -- > response(g41, g42) (8)

However, the rule that is actually created will have an additional

condition which tests bej's retrieval cue (b).

Retrieved(g41) A -' Rejected(g41) A Letterl(g42. b)
--> response(g41, g42) (9)

This happens because the retrieval cue is examined in order to retrieve g42

from the discrimination network. Therefore, the appearance of g42 in the

chunk's actions leads to the cue appearing in the chunk's conditions.

Such a retrieval production cannot support pPrformance in paired-

associate tasks, where after studying a list of stimulus-response pairs, the

subject must generate responses when given just the corresponding stimuli.

One solution to this problem is to include a (partial} description of the

value object in the retrieval production rather than the object itself. If

the description is created anew, by data chunking, from the information

provided in the paired associate, no additional retrieval cues get

1990013581-066

Towards the KnowlPd_p L_'_i In -nar I_a_ bl

,6

"0
t

incorporated, With this ehan_e, the followin._ ,'hunk i_ l_arne,t.

Retriex'ed(_41} A - Rejecte,t(_4l}--> responsel_41, l_tterll-. !,_J _l{ll

C,iven _tch ',_chunk I_>r .-_t .,f +'hun_+. the paire_t 'asso¢i:ue '_:_>k,':_n t,e

performed b.v usil_ the _timulu_ features to retrieve its-..vmt,_l !_tll.

using the _timulus ,.vmbol to retrieve a tpossibl.v partiatl ,te.'scription ,_1'the

response i letterl.t-, hi), usin_ the description of the response to r_trievP the

response symbol (g42). and then using the response symbol to retrieve the

information about the r_sponse ibej).

[.sing this strateZy tb_ t:_-k now requires two independent r_trievat_

from the discrimination network - one to retrieve the stimulus _vmbol

and one to retrieve the response _.vmbol. This is similar to the double

' discrimination performed bv EP.-k.\I ,luring {,aired associate tasks

(Feigenbaum & Simon. 1984J. However. it occurs in Soar not because of a

need to match the data. but a.s a means of ,.nabling responses to bp

retrieved from stimuli in the absence of an.v additional response ,'ues.

5.6. Summary

The representation, storage an,l _lse of dectnrat;ve kno_,:le,lge are

relatively straightforward in _oar. The architecture provides some

support for these capabilities through the primitive attribute-value

representation, the ability to store declarative structures in productions.

and the ability to examine declarative structures in working memory. The

architecture does not enforce a fixed semantics for declarative knowledge.

nor does it provide default inference mechanisms that automatically

o

! Ip

1990013581-067

TowardstheKnowledEeLevelin_oar Pa_,b2

generate structures representing knowledge that is implied by it-" ,_xi._ting

structures. Both of these, if part of the architecture, would imply

excessive rigidity in how the system could behave. "Fo the extent _h_.v:Lre

needed, provision should be made by adding knowledge and problem

spaces on top of the fixed architecture.

The acquisition and retrieval of declarative knowledge is considerably

less straightforward. Chunking is provided as a means for acquiring

declarative knowledge, bi.,t the problem solver must be put through a

number of contortions for the -:ystem to acquire the appror.r;ate chunks

from externally provided knowledge. In addition to the constraint

imposed by the data chunking problem, a related architectural constraint

restricts how known objects can be used in the acquisition of new

know!edge. The solution to the problem posed by this constraint leads to

an _pproach which is increasingly like the discrimination network

structure of the EPAM model of memory.

Retrieval of declarative knowledge is supported by production firing, but

considerable additional complexity arises from the need to const_'ain

retrieval to what might be relevant. The discrimination network we have

employed provides one approach to this. Thcugh the approach currently

seems somewhat ad hoe, the abstract charaeteriza'_ion of the prc:ess as

relating ghe new knowledge to existin8 knowledge, leads to the hope that

it will eventually be placed on a principle,i footing.

1990013581-068

Further work is clearly called for. in ,tevelopin_ and ,'valuating)h_'

acquisit;on and r_trievat mechanisms :hat hay(" been proposed (an,t

implemente,il.

6. Conclusions

Taking an architecture ,_t,rious[y means living within its constraints and

uslng what support it provides, at least until it is clear that the

architecture must be modified, in This ,'hapter ,'e have taken a step

towards evaluating the level of-upport and constraint which the Soar

architecture provides for the knowledge level, a concept that is closely

related to the idea of general intelligence. This helps us to understand the
Ii

. extent to which the architecture's current levels of support and constraint

are adequate for achieving general ",ntelligence. It also provides an

alternat,,e way of viewing Soar in which its architocturai mechanisms are

subjugated to their role in supporting knmviedge. This complements other

efforts that view Soar as a set of mechanisms (Laird. Newell. &

Rosenbloom. 1987}. a hierarchy of meta-levels _Rosenbloom. Laird. £"

Newell. 1988b), a hierarchy of cognitive levels :,) different time scales

(Neweil, 1989, Rosenbloom, Laird. Newell. & Me(arl, 1989). a physical

symbol system (Newell. Rosenbloom & Laird. 19801, and a general goal-

oriented system (Rosenbioom. 1989).

Our particular focus in this step has been on how the Soar architecture

supports and constrains the representat'on, storage, retrieval, use. and

acquisition of three pervasive forms of knowledge: procedural, episodic,

i) b

qt

1990013581-069

Towardsthe KnowledceLevplin Soar Pacev4

and declarative. The analysis reveals that $_)ar adequately -upp_)rts

procedural knowledge - to some extent it was designed for this - hut

that there are still -ignificant questions about episodic and declarative

knowledge. These questions arise primarily because of consequences of the

principle source of constraint in Soar, the fact that. all learning occu_ via

chunking. Chunking can support the acquisition of episodic and

declarative knowledge, but in _ doing it imposes significant requirements

on how the problem solving underlying this acquisition proceeds. These

requirements amount to architecturally-derived hypotheses about how

learning occurs. We have reported here some new results that elaborate

on these hypotheses in the acquisition of declarative knowledge, but

considerable future work is still called for in both the development and

testing of these hypotheses.

One obvious question at this point is why net just add new architectural

mechanisms that directly support the acquisition of episodic and

declarative knowledge? .a_ssuming that appropriato mechanisms could be

developed, there are still at least two critical reasons not to rush into
*

adding them to the architecture. The first reason is that the integration

of new mechanisms into an existing architecture can have major

consequences. An integrated architecture is more than just a collection of

useful mechanisms. It must be constructed so that its mechanisms

compose appropriately with each other. The number of potential

interactions that need to be worried about increases rapidly -

1990013581-070

Towardsthe KnowledgeLev,.Iin "-oar P:l_.e_5

exponentiall.v, if there can he interactions -_mon_ all p_sible -_lb_ots -

with the number of mechanisms. Frequently. the :id,tition ,,t" :L l,orfectly

reasonable new mechanism will ,'au.,,_e -qrc_n_ly ,ly_t',mcti(mal t,,.h'avi,_r in

others of the existing mechanisms. Though there are rimes when :in

architectural addition is absolutely required, and a research effort must be

engendered to get the interactions right (-_ recently ocmlrred for

perceptual-motor behavior in Soar (Wiesmeyer. 1988)). almost always a

conservative strategy i_ what i,_ require_l.

The second reason is that r_'shing t_ add new mechanisms discourages

. learning about the limits c_f the existing mechanisms, and their

s combinations. This is essential to understanding the scope and limits of

the architecture. [t is also essential to discoverin_ the deeper, nonobvious

consequences of the architecture. [f we had jumped to add new learning

mechanisms to Soar, we would never have discovered how the current

mechanisms inherently imply a reconstructive learning strategy. The

discovery of such nonobvious consequences is some ,_f the most interesting

research that can be done with architectures.

This being said, much additional work is still needed. One issue to be

addressed is the origins of the bootstrap knowledge that allows new

procedural, episodic, and declarative knowledge to be acquired. The

acquisition of perceived procedural knowledge requires the existence of an

interpreter for the knowledge. The acqt, isition of perceived episodic and

declarative knowledge requires a set of _re-existing primitive elements plus

I#.

im

_s

1990013581-071

Tnwards the Knowledge Level in _oar Page_6

the knowledge about how to familiarize, discriminate, and construct object

representations. It appears necessary to add some of this to the

architecture, such as the ability to generate a set of primitive elements.

Other parts may just be specific instances of more general capabilities.

which of course must themselves be either innate or learned. For example.

the interpreter for procedural knowledge may be just, an instantiation of a

more general comprehension process. The same may also be true of the

discrimination and construction processes for declarative and episodic

knowledge. The current implementation does not quite look like this. and

architectural changes may be required before it does, but this is one

promising path to pursue.

Finally. a number of additional steps must still be taken before the

relationship of the Soar architecture to the knowledge level is completely

tied down. The most important missing aspect is the relationship between

Soar's mechanisms and the principle of rationality. The key issue is how

its architectural mechanisms, such as its decision procedure and subgoai

generator, allow Soar to approximate rationality even under the

constraints of its being a physical system with time and space bounds.

We have commented briefly on how chunking increases Soar's ability to

bring knowledge to bear under real-time constraints, but much more is

left to be done.

1990013581-072

Toward._fh_[xnowled_eL+,v_lm >oar P:t_e07
S.

4

References

Anderson..1. R. (19_,3}. .k _prea,tin_-ac'tivation rheor.v .)f mem(wy.

.[,mrwll of _'e.rbal Le.arning ,lnd _'erb_d Beha;'ior. .". 261-295.

Anders.on. J. R. (1986). [(no_vle,lge compilation: The general I_arnin_

mechanism. In R. S.._lichalski. J. G. Carbonell. & T. M..XIitchell

(Eds.).._[achine Learning: An Artificial Intelligence .-lpproach.

Iblurne II. Los Altos. CA: .X,lorgan Kaufmann Publishers. Inc.

Bartlett. F. ('. (1932). Rem,:mbering: .1 ",'tudy in Experimental and

5"ocial Psychology. ('ambridge. Eng.: Cambridge University Press.

• Bell. C. G. & Newell. A. (1071). Computer .';tructures: Reading8 and

. Examples. New York: .klcGraw-Hi[I.

Brachman. R. J. (1979). On the epistemological -tatus of semantic nets.

Findler. N. V. (Ed.). Associatice .\'etwor#.s. New York, Academic

Press.

Collins. A..kI.. & Loftus. E. F. (1975). A spreading-:_ctivation the_ry of

semantic processing. Psychological Ret'iew. 8:. 107-428.

Feigenbaum. E. A.. & Simon, H. A. (1984). EP._M-like modele of

recognition and learning. Cognitive Science. 8. 305-336.

Golding, A., Rosenbloom. P. S.. & Laird. J. E. (1087). Learning general

search control from outside guidance. Proceeding8 of IJCA1-87.

Milan.

Kolodner, J. L. (1085). Memory for experience. In G. Bower (Ed.),

B

J

1990013581-073

Towardsthe KnowledgeLewl in Soar Pa_e t_8

°g

/

P_ychology of Learning and .Xlotivation. t'olume 1_. New York.

NY: Academic Pre_3.

Laird..J.E. (1983). _'niversal _'ubgoaling. Doctoral dissertation.

Carnegie-.Mellon University. (Available in Laird. J. E.. Rosenbloom.

P. S.. & Newell. A. Universal Subgoaling and Chunking: The

- Automatic Generation and Learning of Goal Hierarchies. Hingham.

MA: Kluwer. 1986).

Laird. J. E. (1988). Recovery from incorrect knowledge in Soar.

Proceedings of .4.-1,41-88. St. Paul,

Laird, J. E., and Newell, A. (1983). A universal weak method: Summary

of results. Proceedings of IJC.-tI-88. Karlsruhe.

Laird. J. E.. Swediow. K. R.. Aitmann. E.. Congdon. C. B.. & Wiesmeyer.

M. (1989). Soar User's Manual: Version 4.5.

Laird, J. E., Neweil. A., & Rosenbloom, P. S. (1987}. Soar: An

architecture for general intelligence. Artificial Intelligence, .3:3.1-64.

Laird, J. E., Yager, E. S., Tuck, C. M.. & Hucka. XI. (1989). Learning in

tele-autonomous systems using Soar. Proceedings of the NASA

Conference on Space Telerobotics. Pasadena, CA. In press.

Lewis, R. L,, Newe[l, A,, &: Polk, T. A. (198_), Toward a Soar theory of

taking instructions for immediate reasoning tasks. Proceedings of

the 11th Annual Conference of the Cognitit.e Science Society. Ann

Arbor, MI, In press.

1990013581-074

"['e,_'ardstheKnowledgeLes_Im -oar Pa_e_g

Neisser. U. (1967i. ('ognitice Psgchology. New York: kpptemn-t _ntn!'.v-

Crofts.

Newell. A. (19811. The knowiedgo tevPl..41.%[agazine. 2. 1-20.

Newell. A. (1989). ('n/fied Theor[e._ of Cognition. Cambri,i_e. XIA:

Harvard [.'niversity Press. In press.

Newell. A.. Rosenbloom. P. S.. &" Laird. J. E. (1289b _.vmbolie

architectures for cognition. [n .M. 1. Posner (Ed.I. Foun&aions of

Cognitive >'eienee. ('ambridge. XL-k:Bradford Books/XlIT Pre__. [n

press.

" Norman. D. A., £" Bobrow. D. G. (1079). Descriptions: An intermediate
L
, stage in memory retrieval. Cognitive Psychology, 11. 107-123.

Polk. T. A. & Newell. A. (1988). Modeling human syllogistic reasoning in

Soar. Proceedings of the lOth Annual Conforence of the ('ognitice

Science Society. Montreal.

Polk. T. A.. Newell. A.. & Lewis. R. L. t1989). T_ward a unified theory

of immediate reasoning in Soar. Proceeding.,: of the 11th .tnnual

Conference of the Cognitive Science Society. Ann Arbor. MI. In

press.

Rosenbloom. P. S. (1988). Beyond generalization as search: Towards a

unified framework for the acquisition of new knowledge. G.

F. DeJong lEd.). Proceedings cf the A,-L4I Symposium on

Explanation-Based Learning. Stanford. CA: ._AAI.

g.

#

1990013581-075

tb

Towards the KnowledKeLevel in :oar Pa_e70 :

Rosenbloom, P. 5. (1989). A symbolic goal-oriented perspective on

connectionism and _oar. In R. Pfeifer. Z. 5chreter.

F. Fogelman-Soulie. £ L. Steels (Eds.). ('onnectioni.sm ,'rt

Perspective. Amsterdam: Elsevier. In press.

Rosenbloom. P. S.. Laird..J.E.. & Newell, A. (1987). Knowledge level

learning in Soar. Proceedings of .-L-L-tl-87. Seattle.

Rosenbloom. P. S., Laird. J. E.. &"Newell. A. (1988). The chunking of

skill and knowledge. In B. A. G. Elsendoorn &" H. Bouma (Eds.).

Working Models of Human Perception. London: Academic Press.

Rosenbloom, P. S.. Laird. J. E.. & Newell. A. (1988). Meta-levels in Soar. J

In P. Maes & D. Nardi (Eds.). Meta-Level Architectures and

Reflection. Amsterdam: North Holland.

Rosenbioom, P. S.. Laird..l.E.. Newell, A.. & ._IcCarl. R. (1989). A

preliminary analysis of the foundations of the Soar architecture as a

oasis for general intelligence. In D. Kirsh &" C. Hewitt (Eds.}.

Foundations of Artificial Intelligence. Cambridge. NL&:MIT Press.

In press.

Schank, R. C, (1975). Conceptual Information Processing. Amsterdam:

North Holland.

Schank, R. and Ableson, R. (1977). ¢ "_.cmpta. Plans. Goals and

Understanding. HiUsdale, NJ: Law,enee Eribaum.

Steier, D. M., Laird, J. E., Newell. A.. Rosenbloom. P. S.. Flynn. R..

1990013581-076

o
Towards the Knowledge [.eve] la _,oar Page 71

I

Gelding. A.. Polk. T. A.. Shivers. O. (i.. Vnruh. A.. ,V 'f¢_¢r. (,. P,.

(19871. V_riet.ies of Learnin_ in _ar: [987. P. [.an,ziey _Ed.i.

Proceedings of the, Fourth [ntern,ltiomll |_'_rk.shop ,.m ._btchine

Learning. Los Altos. ('A. NIorgan Kaufmann Publishers. Inc..

Tulving, E. 11983). Elements of Episodic Memory. New York: Oxford

University Press.

Watkins. M. J.. ,L- Gardiner. J..kl. (197.91. _.n appreciation _f generate-

recognize theoo' of recall..hmr:ml of l'erbel Learning ,Ind Verbal

Behat'ior. 18. 687-704.

Wiesmeyer..x.I. (1988).._.'oar I/O Reference ._la nual. Version 2.

• Yosl;. G. R. (1987). T.4Q: Soar Task .[cquisition ",'!1stem. _'ersion :2.

Yost. G. R.. & Newell. A. 11988). l,earning New Tasks in Soar.

Unpublished.

I

g,

t

1990013581-077

